Laser & Infrared, Volume. 55, Issue 6, 920(2025)
Research on low-power ultrasonic infrared thermal imaging detection technology of CFRP through-cracks
[1] [1] Hegde S, Satish Shenoy B, Chethan K N. Review on carbon fiber reinforced polymer (CFRP) and their mechanical performance[J]. Materials Today: Proceedings, 2019, 19: 658-662.
[4] [4] Zolfaghari A, Zolfaghari A, Kolahan F. Reliability and sensitivity of magnetic particle nondestructive testing in detecting the surface cracks of welded components[J]. Nondestructive Testing and Evaluation, 2018, 33(3): 290-300.
[5] [5] Zolfaghari A, Kolahan F. Reliability and sensitivity of visible liquid penetrant NDT for inspection of welded components[J]. Materials Testing, 2017, 59(3): 290-294.
[6] [6] Ravikumar S, Ramachandran K I, Sugumaran V. Machine learning approach for automated visual inspection of machine components[J]. Expert Systems with Applications, 2011, 38(4): 3260-3266.
[7] [7] Garca-Martn J, Gmez-Gil J, Vzquez-Snchez E. Non-destructive techniques based on eddy current testing[J]. Sensors, 2011, 11(3): 2525-2565.
[8] [8] Da Silva R R, Calba L P, Siqueira M H S, et al. Pattern recognition of weld defects detected by radiographic test[J]. NDT & E International, 2004, 37(6): 461-470.
[9] [9] Han X Y, Favro L D, Ouyang Z, et al. Thermosonics: detecting cracks and adhesion defects using ultrasonic excitation and infrared imaging[J]. The Journal of Adhesion, 2001, 76(2): 151-162.
[10] [10] Helfen T B, Venkat R S, Rabe U, et al. Characterisation of CFRP through enhanced ultrasonic testing methods[J]. Applied Composite Materials, 2012, 19(6): 913-919.
[11] [11] Pracht M, Swiderski W. Analysis of the possibility of non-destructive testing to detect defects in multi-layered composites reinforced fibers by optical IR thermography[J]. Composite Structures, 2019, 213: 204-208.
[12] [12] Meola C, Boccardi S, Carlomagno G M, et al. Nondestructive evaluation of carbon fibre reinforced composites with infrared thermography and ultrasonics[J]. Composite Structures, 2015, 134: 845-853.
[13] [13] Holland S D, Uhl C, Renshaw J. Toward a viable strategy for estimating vibrothermographic probability of detection[J]. AIP Conference Proceedings, 2008, 975(1): 491-497.
[14] [14] Solodov I, Rahammer M, Derusova D, et al. Highly-efficient and noncontact vibro-thermography via local defect resonance[J]. Quantitative Infrared Thermography Journal, 2015, 12(1): 98-111.
[15] [15] Renshaw J, Holland S D, Thompson R B, et al. Vibration-induced tribological damage to fracture surfaces via vibrothermography[J]. International Journal of Fatigue, 2011, 33(7): 849-857.
[16] [16] Parvasi S M, Xu C H, Kong Q Z, et al. Detection of multiplethin surface cracks using vibrothermography with low-power piezoceramic-based ultrasonic actuator-a numerical study with experimental verification[J]. Smart Materials and Structures, 2016, 25(5): 055042.
[17] [17] Derusova D A, Vavilov V P, Druzhinin N V. Evaluating impact damage in graphite epoxy composite by using low-power vibrothermography[C]//Thermosense: Thermal Infrared Applications XXXVIII. Baltimore: SPIE, 2016: 98610F.
[18] [18] Lamboul B, Passilly F, Roche J M, et al. Ultrasonic vibrothermography using low-power actuators: an impact damage detection case study[J]. AIP Conference Proceedings, 2015, 1650(1): 319-326.
Get Citation
Copy Citation Text
CHEN Shuang, LUO Lin-qi, LI Rong-hao, WANG Run-hao, HE Yi. Research on low-power ultrasonic infrared thermal imaging detection technology of CFRP through-cracks[J]. Laser & Infrared, 2025, 55(6): 920
Category:
Received: Sep. 2, 2024
Accepted: Jul. 30, 2025
Published Online: Jul. 30, 2025
The Author Email: