Chinese Optics, Volume. 15, Issue 2, 364(2022)
Averaged intensity and spectral shift of partially coherent chirped optical coherence vortex lattices in biological tissue turbulence
[1] SCHMITT J M, KUMAR G. Turbulent nature of refractive-index variations in biological tissue[J]. Optics Letters, 21, 1310-1312(1996).
[2] GAO W R, KOROTKOVA O. Changes in the state of polarization of a random electromagnetic beam propagating through tissue[J]. Optics Communications, 270, 474-478(2007).
[3] LIU X Y, ZHAO D M. The statistical properties of anisotropic electromagnetic beams passing through the biological tissues[J]. Optics Communications, 285, 4152-4156(2012).
[4] ZHANG H H, CUI ZH W, HAN Y P, et al. Average intensity and beam quality of Hermite-Gaussian correlated Schell-Model beams propagating in turbulent biological tissue[J]. Frontiers in Physics, 9, 650537(2021).
[5] MA L Y, PONOMARENKO S A. Optical coherence gratings and lattices[J]. Optics Letters, 39, 6656-6659(2014).
[6] MA L Y, PONOMARENKO S A. Free-space propagation of optical coherence lattices and periodicity reciprocity[J]. Optics Express, 23, 1848-1856(2015).
[7] CHEN Y H, PONOMARENKO S A, CAI Y J. Experimental generation of optical coherence lattices[J]. Applied Physics Letters, 109, 061107(2016).
[8] LIU X L, YU J Y, CAI Y J, et al. Propagation of optical coherence lattices in the turbulent atmosphere[J]. Optics Letters, 41, 4182-4185(2016).
[9] LUO B, WU G H, YIN L F, et al. Propagation of optical coherence lattices in oceanic turbulence[J]. Optics Communications, 425, 80-84(2018).
[10] HUANG Y, YUAN Y SH, LIU X L, et al. Propagation of optical coherence vortex lattices in turbulent atmosphere[J]. Applied Sciences, 8, 2476(2018).
[11] YE F, XIE J T, HONG SH H, et al. Propagation properties of a controllable rotating elliptical Gaussian optical coherence lattice in oceanic turbulence[J]. Results in Physics, 13, 102249(2019).
[12] HUANG X W, DENG ZH X, SHI X H, et al. Average intensity and beam quality of optical coherence lattices in oceanic turbulence with anisotropy[J]. Optics Express, 26, 4786-4797(2018).
[13] GUO M W, ZHAO D M. Interfering optical coherence lattices by use of a wavefront-folding interferometer[J]. Optics Express, 25, 14351-14358(2017).
[14] LIANG CH H, MI CH K, WANG F, et al. Vector optical coherence lattices generating controllable far-field beam profiles[J]. Optics Express, 25, 9872-9885(2017).
[15] JI X L, ZHANG E T, LÜ B D. Spectral properties of chirped Gaussian pulsed beams propagating through the turbulent atmosphere[J]. Journal of Modern Optics, 54, 541-553(2007).
[16] LIU D J, WANG G Q, WANG Y CH. Average intensity and coherence properties of a partially coherent Lorentz-Gauss beam propagating through oceanic turbulence[J]. Optics & Laser Technology, 98, 309-317(2018).
[17] DUAN M L, WU Y G, ZHANG Y M, et al. Coherence properties of a random electromagnetic vortex beam propagating in biological tissues[J]. Journal of Modern Optics, 66, 59-66(2019).
[18] ARPALI S A, ARPALI ç, BAYKAL Y. Bit error rate of a Gaussian beam propagating through biological tissue[J]. Journal of Modern Optics, 67, 340-345(2020).
[19] DUAN M L, TIAN Y N, ZHANG Y M, et al. Influence of biological tissue and spatial correlation on spectral changes of Gaussian-Schell model vortex beam[J]. Optics and Lasers in Engineering, 134, 106224(2020).
Get Citation
Copy Citation Text
Ke CHENG, Bo-yuan ZHU, Ling-yun SHU, Sai LIAO, Meng-ting LIANG. Averaged intensity and spectral shift of partially coherent chirped optical coherence vortex lattices in biological tissue turbulence[J]. Chinese Optics, 2022, 15(2): 364
Category: Original Article
Received: Sep. 17, 2021
Accepted: Nov. 16, 2021
Published Online: Mar. 28, 2022
The Author Email: Ke CHENG (ck@cuit.edu.cn)