Chinese Journal of Lasers, Volume. 49, Issue 21, 2100002(2022)

Research Status and Progress of Dissipative Soliton Resonance Pulsed Fiber Lasers

Chenghao Liu, Yiqing Cao, Xiahui Tang, Ming Tang, and Luming Zhao*
Author Affiliations
  • Optics Valley Laboratory, Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China
  • show less
    References(79)

    [1] Jiang H L, Jiang L, Song Y S et al. Research of optical and APT technology in one-point to multi-point simultaneous space laser communication system[J]. Chinese Journal of Lasers, 42, 0405008(2015).

    [2] Shenoy M, Huang H Y. An optical fiber-based corrosion sensor based on laser light reflection[J]. Proceedings of SPIE, 7647, 76473O(2010).

    [3] Agrež V, Petkovšek R. Gain-switched Yb-doped fiber laser for microprocessing[J]. Applied Optics, 52, 3066-3072(2013).

    [4] Barton S N, Janoff K A, Bakos G J. Medical laser fiber optic cable having improved treatment indicators for BPH surgery[P].

    [5] Falconi M C, Palma G, Starecki F et al. Novel pumping schemes of Mid-IR photonic crystal fiber lasers for aerospace applications[C](2016).

    [6] Campanelli S L, Casalino G, Mortello M et al. Microstructural characteristics and mechanical properties of Ti6Al4V alloy fiber laser welds[J]. Procedia CIRP, 33, 428-433(2015).

    [7] Whitenett G, Stewart G, Yu H B et al. Investigation of a tuneable mode-locked fiber laser for application to multipoint gas spectroscopy[J]. Journal of Lightwave Technology, 22, 813-819(2004).

    [8] Maiti D, Brandt-Pearce M. Modified nonlinear decision feedback equalizer for long-haul fiber-optic communications[J]. Journal of Lightwave Technology, 33, 3763-3772(2015).

    [9] Tamura K, Haus H A, Ippen E P. Self-starting additive pulse mode-locked erbium fibre ring laser[J]. Electronics Letters, 28, 2226-2228(1992).

    [10] Kelly S M J. Characteristic sideband instability of periodically amplified average soliton[J]. Electronics Letters, 28, 806-807(1992).

    [11] Nelson L E, Jones D J, Tamura K et al. Ultrashort-pulse fiber ring lasers[J]. Applied Physics B, 65, 277-294(1997).

    [12] Hasegawa A, Tappert F. Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers. I. Anomalous dispersion[J]. Applied Physics Letters, 23, 142-144(1973).

    [13] Zakharov V E, Shabat A B. Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media[J]. Journal of Experimental and Theoretical Physics, 34, 62-69(1972).

    [14] Tamura K, Ippen E P, Haus H A et al. 77-fs pulse generation from a stretched-pulse mode-locked all-fiber ring laser[J]. Optics Letters, 18, 1080-1082(1993).

    [15] Ruehl A, Kuhn V, Wandt D et al. Normal dispersion erbium-doped fiber laser with pulse energies above 10 nJ[J]. Optics Express, 16, 3130-3135(2008).

    [16] Anderson D, Desaix M, Karlsson M et al. Wave-breaking-free pulses in nonlinear-optical fibers[J]. Journal of the Optical Society of America B, 10, 1185-1190(1993).

    [17] Peacock A C, Kruhlak R J, Harvey J D et al. Solitary pulse propagation in high gain optical fiber amplifiers with normal group velocity dispersion[J]. Optics Communications, 206, 171-177(2002).

    [18] Nie B, Pestov D, Wise F W et al. Generation of 42-fs and 10-nJ pulses from a fiber laser with self-similar evolution in the gain segment[J]. Optics Express, 19, 12074-12080(2011).

    [19] Zhao L M, Tang D Y, Wu J. Gain-guided soliton in a positive group-dispersion fiber laser[J]. Optics Letters, 31, 1788-1790(2006).

    [20] Chong A, Renninger W H, Wise F W. All-normal-dispersion femtosecond fiber laser with pulse energy above 20 nJ[J]. Optics Letters, 32, 2408-2410(2007).

    [21] Lefrançois S, Kieu K, Deng Y J et al. Scaling of dissipative soliton fiber lasers to megawatt peak powers by use of large-area photonic crystal fiber[J]. Optics Letters, 35, 1569-1571(2010).

    [22] Song Y F, Chen S, Zhang Q et al. Vector soliton fiber laser passively mode locked by few layer black phosphorus-based optical saturable absorber[J]. Optics Express, 24, 25933-25942(2016).

    [23] Guo B, Wang S H, Wu Z X et al. Sub-200 fs soliton mode-locked fiber laser based on bismuthene saturable absorber[J]. Optics Express, 26, 22750-22760(2018).

    [24] Song Y F, Shi X J, Wu C F et al. Recent progress of study on optical solitons in fiber lasers[J]. Applied Physics Reviews, 6, 021313(2019).

    [25] Chang W, Ankiewicz A, Soto-Crespo J M et al. Dissipative soliton resonances[J]. Physical Review A, 78, 023830(2008).

    [26] Wu X, Tang D Y, Zhang H et al. Dissipative soliton resonance in an all-normal-dispersion erbium-doped fiber laser[J]. Optics Express, 17, 5580-5584(2009).

    [27] Li D J, Tang D Y, Zhao L M et al. Mechanism of dissipative-soliton-resonance generation in passively mode-locked all-normal-dispersion fiber lasers[J]. Journal of Lightwave Technology, 33, 3781-3787(2015).

    [28] Liu S M[D]. Rectangular pulse passively mode-locked thulium doped fiber laser(2020).

    [29] Kim D, Lee B W, Kim J. Polarization-maintaining (PM) nonlinear-amplifying-loop-mirror (NALM) mode-locked fiber laser utilizing a 3x3 coupler[J]. Proceedings of SPIE, 10897, 385-390(2019).

    [30] Ibarra-Escamilla B, Pottiez O, Kuzin E A et al. Experimental investigation of a passively mode-locked fiber laser based on a symmetrical NOLM with a highly twisted low-birefringence fiber[J]. Laser Physics, 18, 914-919(2008).

    [31] Du T J, Luo Z Q, Yang R H et al. 1.2-W average-power, 700-W peak-power, 100-ps dissipative soliton resonance in a compact Er∶Yb co-doped double-clad fiber laser[J]. Optics Letters, 42, 462-465(2017).

    [32] Semaan G, Braham F B, Fourmont J et al. 10 μJ dissipative soliton resonance square pulse in a dual amplifier figure-of-eight double-clad Er∶Yb mode-locked fiber laser[J]. Optics Letters, 41, 4767-4770(2016).

    [33] Krzempek K, Abramski K. 6.5 μJ pulses from a compact dissipative soliton resonance mode-locked erbium-ytterbium double clad (DC) laser[J]. Laser Physics Letters, 14, 015101(2017).

    [34] Wang S K, Ning Q Y, Luo A P et al. Dissipative soliton resonance in a passively mode-locked figure-eight fiber laser[J]. Optics Express, 21, 2402-2407(2013).

    [35] Duan L N, Liu X M, Mao D et al. Experimental observation of dissipative soliton resonance in an anomalous-dispersion fiber laser[J]. Optics Express, 20, 265-270(2012).

    [36] Liu L, Liao J H, Ning Q Y et al. Wave-breaking-free pulse in an all-fiber normal-dispersion Yb-doped fiber laser under dissipative soliton resonance condition[J]. Optics Express, 21, 27087-27092(2013).

    [37] Seong N H, Kim D Y. Experimental observation of stable bound solitons in a figure-eight fiber laser[J]. Optics Letters, 27, 1321-1323(2002).

    [38] Tang D Y, Zhao B, Shen D Y et al. Compound pulse solitons in a fiber ring laser[J]. Physical Review A, 68, 013816(2003).

    [39] Grudinin A B, Richardson D J, Payne D N. Energy quantisation in figure eight fibre laser[J]. Electronics Letters, 28, 67-68(1992).

    [40] Krzempek K. Dissipative soliton resonances in all-fiber Er-Yb double clad figure-8 laser[J]. Optics Express, 23, 30651-30656(2015).

    [41] Wang Y F, Li L, Zhao J Q et al. Unusual evolutions of dissipative-soliton-resonance pulses in an all-normal dispersion fiber laser[J]. IEEE Photonics Journal, 11, 1500509(2019).

    [42] Aguergaray C, Broderick N G R, Erkintalo M et al. Mode-locked femtosecond all-normal all-PM Yb-doped fiber laser using a nonlinear amplifying loop mirror[J]. Optics Express, 20, 10545-10551(2012).

    [43] Erkintalo M, Aguergaray C, Runge A et al. Environmentally stable all-PM all-fiber giant chirp oscillator[J]. Optics Express, 20, 22669-22674(2012).

    [44] Aguergaray C, Hawker R, Runge A F J et al. 120 fs, 4.2 nJ pulses from an all-normal-dispersion, polarization-maintaining, fiber laser[J]. Applied Physics Letters, 103, 121111(2013).

    [45] Ding E, Grelu P, Kutz J N. Dissipative soliton resonance in a passively mode-locked fiber laser[J]. Optics Letters, 36, 1146-1148(2011).

    [46] Zhang X M, Gu C, Chen G L et al. Square-wave pulse with ultra-wide tuning range in a passively mode-locked fiber laser[J]. Optics Letters, 37, 1334-1336(2012).

    [47] Yang J H, Guo C Y, Ruan S C et al. Observation of dissipative soliton resonance in a net-normal dispersion figure-of-eight fiber laser[J]. IEEE Photonics Journal, 5, 1500806(2013).

    [48] Li X L, Zhang S M, Zhang H X et al. Highly efficient rectangular pulse emission in a mode-locked fiber laser[J]. IEEE Photonics Technology Letters, 26, 2082-2085(2014).

    [49] Huang Y Z, Luo Z Q, Xiong F F et al. Direct generation of 2 W average-power and 232 nJ picosecond pulses from an ultra-simple Yb-doped double-clad fiber laser[J]. Optics Letters, 40, 1097-1100(2015).

    [50] Zhao J Q, Ouyang D Q, Zheng Z J et al. 100 W dissipative soliton resonances from a thulium-doped double-clad all-fiber-format MOPA system[J]. Optics Express, 24, 12072-12081(2016).

    [51] Krzempek K, Sotor J, Abramski K. Compact all-fiber figure-9 dissipative soliton resonance mode-locked double-clad Er∶Yb laser[J]. Optics Letters, 41, 4995-4998(2016).

    [52] Krzempek K, Abramski K. Dissipative soliton resonance mode-locked double clad Er∶Yb laser at different values of anomalous dispersion[J]. Optics Express, 24, 22379-22386(2016).

    [53] Braham F B, Semaan G, Bahloul F et al. Experimental optimization of dissipative soliton resonance square pulses in all anomalous passively mode-locked fiber laser[J]. Journal of Optics, 19, 105501(2017).

    [54] Kharitonov S, Brès C S. All-fiber dissipative soliton resonance mode-locked figure-9 thulium-doped fiber laser[C](2017).

    [55] Cai J H, Chen S P, Hou J. 1.1-kW peak-power dissipative soliton resonance in a mode-locked Yb-fiber laser[J]. IEEE Photonics Technology Letters, 29, 2191-2194(2017).

    [56] Dou Z Y, Zhang B, He X et al. High-power and large-energy dissipative soliton resonance in a compact Tm-doped all-fiber laser[J]. IEEE Photonics Technology Letters, 31, 381-384(2019).

    [57] Sun X, Jia D F, Li Z H et al. Generation of square pulses in passively mode-locked ytterbium-doped fiber laser with long cavity[J]. Chinese Journal of Lasers, 47, 0101003(2020).

    [58] Xu Z, Jia D F, Li Z H et al. Generation of square pulses at both anomalous and normal dispersion regimes in passively mode-locked erbium-doped fiber laser[J]. Chinese Journal of Lasers, 47, 1201006(2020).

    [59] Zou J, Dong C, Wang H et al. Towards visible-wavelength passively mode-locked lasers in all-fibre format[J]. Light: Science & Applications, 9, 61(2020).

    [60] Chen H, Zhou F, Lei C M et al. High-power all-polarization-maintaining large-mode-area dumbbell-shaped, ytterbium-doped mode-locked fiber laser[J]. Chinese Journal of Lasers, 48, 0315003(2021).

    [61] Zhao L M, Tang D Y, Zhao B. Period-doubling and quadrupling of bound solitons in a passively mode-locked fiber laser[J]. Optics Communications, 252, 167-172(2005).

    [62] Zhao L M, Tang D Y, Cheng T H et al. Period-doubling of multiple solitons in a passively mode-locked fiber laser[J]. Optics Communications, 273, 554-559(2007).

    [63] Zhao L M, Tang D Y, Cheng T H et al. Period-doubling of dispersion-managed solitons in an Erbium-doped fiber laser at around zero dispersion[J]. Optics Communications, 278, 428-433(2007).

    [64] Zhao L M, Tang D Y, Wu X et al. Period-doubling of gain-guided solitons in fiber lasers of large net normal dispersion[J]. Optics Communications, 281, 3557-3560(2008).

    [65] Zhao L M, Tang D Y, Zhang H et al. Period-doubling of vector solitons in a ring fiber laser[J]. Optics Communications, 281, 5614-5617(2008).

    [66] Du W X, Li H P, Lü Y J et al. Period doubling of dissipative-soliton-resonance pulses in passively mode-locked fiber lasers[J]. Frontiers in Physics, 7, 253(2020).

    [67] Wang Y F, Su L, Wang S et al. Breach and recurrence of dissipative soliton resonance during period-doubling evolution in a fiber laser[J]. Physical Review A, 102, 013501(2020).

    [68] Hua L M, Wang S, Yang X et al. Period doubling of multiple dissipative-soliton-resonance pulses in a fibre laser[J]. OSA Continuum, 3, 911-920(2020).

    [69] Cheng Z, Klimczak M, Buczyński R et al. Period doubling and merging of multiple dissipative-soliton-resonance pulses in a fiber laser[J]. Applied Optics, 60, 3322-3326(2021).

    [70] Liu C H, Klimczak M, Buczyński R et al. Pulse shrinkage of dissipative-soliton-resonance pulses with or without period doubling[J]. Optics Communications, 512, 128071(2022).

    [71] Zhao L M, Li D J, Li L et al. Route to larger pulse energy in ultrafast fiber lasers[J]. IEEE Journal of Selected Topics in Quantum Electronics, 24, 8800409(2018).

    [72] Scholle K, Lamrini S, Koopmann P et al. 2 μm laser sources and their possible applications[M]. Frontiers in guided wave optics and optoelectronics(2010).

    [73] Mingareev I, Weirauch F, Olowinsky A et al. Welding of polymers using a 2 μm thulium fiber laser[J]. Optics & Laser Technology, 44, 2095-2099(2012).

    [74] Yang Y Q, Wu S B, Zhang Y et al. Application progress and prospect of fiber laser in metal additive manufacturing[J]. Chinese Journal of Lasers, 47, 0500012(2020).

    [75] Ludwig H C, Kruschat T, Knobloch T et al. First experiences with a 2.0-μm near infrared laser system for neuroendoscopy[J]. Neurosurgical Review, 30, 195-201(2007).

    [76] Passacantilli E, Anichini G, Delfinis C P et al. Use of 2-μm continuous-wave thulium laser for surgical removal of a tentorial meningioma: case report[J]. Photomedicine and Laser Surgery, 29, 437-440(2011).

    [77] Dray X, Donatelli G, Krishnamurty D M et al. A 2-μm continuous-wave laser system for safe and high-precision dissection during NOTES procedures[J]. Digestive Diseases and Sciences, 55, 2463-2470(2010).

    [78] Zheng Z J[D]. Study on thulium-doped fiber laser and its application in all-fiber MIR supercontinuum generation(2018).

    [79] Wang N[D]. Ultraviolet-enhanced supercontinuum generation with a fiber laser operating in dissipative soliton resonance region(2017).

    Tools

    Get Citation

    Copy Citation Text

    Chenghao Liu, Yiqing Cao, Xiahui Tang, Ming Tang, Luming Zhao. Research Status and Progress of Dissipative Soliton Resonance Pulsed Fiber Lasers[J]. Chinese Journal of Lasers, 2022, 49(21): 2100002

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: reviews

    Received: Jan. 10, 2022

    Accepted: Mar. 4, 2022

    Published Online: Nov. 9, 2022

    The Author Email: Zhao Luming (lmzhao@hust.edu.cn)

    DOI:10.3788/CJL202249.2100002

    Topics