Journal of Electronic Science and Technology, Volume. 23, Issue 2, 100304(2025)

Layer-2 transferable belief model: Manage uncertainty on random permutation sets

Qian-Li Zhou and Yong Deng*
Author Affiliations
  • Institute of Fundamental and Frontier Science, University of Electronic Science and Technology of China, Chengdu, 611731, China
  • show less
    Figures & Tables(7)
    Flow chart of layer-2 TBM.
    Flow chart of attribute fusion-based classifier through TBM.
    Flow chart of the attribute fusion-based classifier through layer-2 TBM.
    • Table 1. Testimonies of witnesses and their contextual knowledge.

      View table
      View in Article

      Table 1. Testimonies of witnesses and their contextual knowledge.

      WitnessTestimonyReliability
      1$ {\omega }_{3} $ is more likely to be the perpetrator than $ {\omega }_{1} $.0.80
      2Likelihood of the perpetrator is $ {\omega }_{3}\succ {\omega }_{2}\succ {\omega }_{1} $.0.85
      3Perpetrator is $ {\omega }_{3} $ or $ {\omega }_{4} $.0.30
      4Perpetrator is $ {\omega }_{1} $.0.50
      5$ {\omega }_{3} $ is more likely to be the perpetrator than $ {\omega }_{4} $.0.25
    • Table 2. PerMFs of testimonies and contextual knowledge.

      View table
      View in Article

      Table 2. PerMFs of testimonies and contextual knowledge.

      WitnessTestimonyReliability
      1$ \mathrm{P}\mathrm{e}\mathrm{r}{\mathrm{m}}_{{T}_1}\left({F}_{5}^{2}\right)=1.0 $$ \operatorname{Perm}_{{R}_1}(\varnothing)=0.80{\mathrm{,}} \quad \operatorname{Perm} _{{R}_1}\left(F_{15}^i\right)=\dfrac{0.20}{24}{\mathrm{,}}\; i=\{1{\mathrm{,}}\;2{\mathrm{,}}\; \cdots{\mathrm{,}}\; 24\} $
      2$ \mathrm{P}\mathrm{e}\mathrm{r}{\mathrm{m}}_{{T}_2}\left({F}_{7}^{6}\right)=1.0 $$ \operatorname{Perm}_{{R}_2}(\emptyset)=0.85{\mathrm{,}}\quad \operatorname{Perm}_{{R}_2}\left(F_{15}^i\right)=\dfrac{0.15}{24}{\mathrm{,}}\; i=\{1{\mathrm{,}}\; 2{\mathrm{,}}\;\cdots {\mathrm{,}}\; 24\} $
      3$ \mathrm{P}\mathrm{e}\mathrm{r}{\mathrm{m}}_{{T}_3}\left({F}_{12}^{1}\right)=0.5 $$ \mathrm{P}\mathrm{e}\mathrm{r}{\mathrm{m}}_{{T}_3}\left({F}_{12}^{2}\right)=0.5 $$ \operatorname{Perm}_{{R}_3}(\emptyset)=0.30{\mathrm{,}} \quad \operatorname{Perm}_{{R}_3}\left(F_{15}^i\right)=\dfrac{0.70}{24}{\mathrm{,}}\; i=\{1{\mathrm{,}}\; 2{\mathrm{,}}\; \cdots {\mathrm{,}}\; 24\} $
      4$ \mathrm{P}\mathrm{e}\mathrm{r}{\mathrm{m}}_{{T}_4}\left({F}_{1}\right)=1.0 $$\operatorname{Perm}_{{R}_4}(\emptyset)=0.50{\mathrm{,}} \quad \operatorname{Perm}_{{R}_4}\left(F_{15}^i\right)=\dfrac{0.50}{24}{\mathrm{,}}\; i=\{1{\mathrm{,}}\; 2{\mathrm{,}}\;\cdots {\mathrm{,}}\; 24\} $
      5$ \mathrm{P}\mathrm{e}\mathrm{r}{\mathrm{m}}_{{T}_5}\left({F}_{7}^{1}\right)=1.0 $$ \operatorname{Perm}_{{R}_1}(\emptyset)=0.25{\mathrm{,}} \quad \operatorname{Perm}_{{R}_5}\left(F_{15}^i\right)=\dfrac{0.75}{24}{\mathrm{,}}\; i=\{1{\mathrm{,}}\;2{\mathrm{,}}\; \cdots {\mathrm{,}}\; 24\} $
    • Table 3. Parameters of the datasets.

      View table
      View in Article

      Table 3. Parameters of the datasets.

      DatasetInstanceLabelAttribute
      Iris15034
      Wine178313
      Seed27037
      Breast cancer569230
      Sonar208260
      Iono351234
    • Table 4. Comparison of experimental results of three classifiers.

      View table
      View in Article

      Table 4. Comparison of experimental results of three classifiers.

      DatasetTBMRPSRLayer-2 TBM
      Iris95.29%95.99%95.54% (0.25, 1.00, 0.80) 95.61% (0.30, 1.00, 0.80) 95.57% (0.35, 1.00, 0.80)
      Wine97.20%98.04%97.55% (0.35, 0.00, 0.80) 97.84% (0.40, 0.00, 0.80) 97.55% (0.45, 0.00, 0.80)
      Seed90.35%93.40%91.16% (0.33, 1.00, 0.80) 91.18% (0.33, 1.00, 1.00) 91.35% (0.33, 0.00, 1.00)
      Breast cancer71.71%73.27%93.66% (0.20, 0.10, 0.80) 93.93% (0.20, 0.10, 0.50)
      Sonar67.33%75.39%69.02% (0.01, 1.00, 0.80) 69.09% (0.01, 0.50, 0.80) 68.38% (0.01, 0.00, 0.80)
      Iono80.86%87.97%84.72% (0.01, 0.00, 0.80) 81.55% (0.10, 0.00, 0.80) 82.08% (0.20, 0.00, 0.80)
    Tools

    Get Citation

    Copy Citation Text

    Qian-Li Zhou, Yong Deng. Layer-2 transferable belief model: Manage uncertainty on random permutation sets[J]. Journal of Electronic Science and Technology, 2025, 23(2): 100304

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Oct. 28, 2024

    Accepted: Feb. 25, 2025

    Published Online: Jun. 16, 2025

    The Author Email: Yong Deng (dengentropy@uestc.edu.cn)

    DOI:10.1016/j.jnlest.2025.100304

    Topics