Chinese Journal of Lasers, Volume. 43, Issue 4, 414003(2016)
Automatic Registration of Terrestrial Point Clouds without Additional Information
[1] [1] Besl P J, McKay N D. A method for registration of 3D shapes[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1992, 14(2): 239-256.
[2] [2] Zhang Z. Iterative point matching for registration of free-form curves and surfaces[J]. International Journal of Computer Vision, 1994, 13(2): 119-152.
[3] [3] Li Jian, Wang Zongmin, Ma Yurong, et al.. Automatic and accurate mosaicking of point clouds from multi-station laser scanning[J]. Geomatics and Information Science of Wuhan University, 2014, 34(9): 1114-1120.
[4] [4] Wu Mengqi, Li Zhongwei, Zhong Kai, et al.. Adaptive point cloud registration method based on geometric features and photometric features [J]. Acta Optica Sinica, 2015, 35(2): 0215002.
[5] [5] Weinmann M, Weinmann M, Hinz S, et al.. Fast and automatic image-based registration of TLS data[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2011, 66(6): S62-S70.
[7] [7] Gelfand N, Mitra N J, Guibas L J, et al.. Robust global registration[C]. Symposium on Geometry Processing, 2005, 2(3): 5.
[8] [8] Rusu R B, Blodow N, Marton Z C, et al.. Aligning point cloud views using persistent feature histograms[C]. IEEE International Conference on Intelligent Robots and Systems, 2008: 3384-3391.
[9] [9] Huang Yuan, Da Feipeng, Tao Haiji, et al.. An automatic registration algorithm for point cloud based on feature extraction[J]. Chinese J Lasers, 2015, 42(3): 0308002.
[10] [10] Stamos I, Leordean M. Automated feature-based range registration of urban scenes of large scale[C]. IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003, 2: 555-561.
[11] [11] Zhang Xiao, Zhang Aiwu, Wang Zhihua. Point cloud registration based on improved normal distribution transform algorithm[J]. Laser & Optoelectronics Progress, 2014, 51(4): 041002.
[12] [12] Pu Shi, Li Jingwei, Guo Siqing. Registration of terrestrial laser point clouds by fusing semantic features and GPS positions[J]. Acta Geodaetica et Cartographica Sinica.2014,43(5):545-550.
[13] [13] Wei Shengbin, Wang Shaoqing, Zhou Changhe, et al.. An iterative closest point algorithm based on biunique correspondence of point clouds for 3D reconstruction[J]. Acta Optica Sinica, 2015, 35(5): 0515003.
[14] [14] Rusu R B, Marton Z C, Blodow N, et al.. Persistent point feature histograms for 3D point clouds[C]. Proc 10 th Int Conf Intel Autonomous Syst (IAS-10), Baden-Baden, Germany, 2008: 119-128.
[15] [15] Koehl P. Protein structure similarities[J]. Current Opinion in Structural Biology, 2001, 11(3): 348-353.
[16] [16] West K F, Webb B N, Lersch J R, et al.. Context-driven automated target detection in 3D data[C]. Defense and Security, International Society for Optics and Photonics, 2004: 133-143.
Get Citation
Copy Citation Text
Chen Maolin, Lu Weixin, Wan Youchuan, Tian Siyi, Yang Wei. Automatic Registration of Terrestrial Point Clouds without Additional Information[J]. Chinese Journal of Lasers, 2016, 43(4): 414003
Category: Remote Sensing and Sensors
Received: Sep. 29, 2015
Accepted: --
Published Online: Apr. 5, 2016
The Author Email: Maolin Chen (maolinchen@whu.edu.cn)