Optoelectronic Technology, Volume. 42, Issue 4, 254(2022)
Effects of Ionic Liquids on the Properties of Low‑dimensional Layered Organic⁃Inorganic Hybrid Perovskite Films and Devices
[1] Kojima A, Teshima K, Shirai Y et al. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells[J]. Journal of the American Chemical Society, 131, 6050-6051(2009).
[2] Shahiduzzaman M, Muslih E Y, Hasan A K M et al. The benefits of ionic liquids for the fabrication of efficient and stable perovskite photovoltaics[J]. Chemical Engineering Journal, 411, 128461(2021).
[3] Schulz P, Cahen D, Kahn A. Halide perovskites: Is it all about the interfaces?[J]. Chemical Reviews, 119, 3349-3417(2019).
[4] Xiao M D, Huang F Z, Huang W C et al. A fast deposition-crystallization procedure for highly efficient lead iodide perovskite thin-film solar cells[J]. Angewandte Chemie-International Edition, 53, 9898-9903(2014).
[5] Jeon N J, Noh J H, Kim Y C et al. Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells[J]. Nature Materials, 13, 897-903(2014).
[6] Ahn N, Son D Y, Jang I H et al. Highly reproducible perovskite solar cells with average efficiency of 18.3% and best efficiency of 19.7% fabricated via lewis base adduct of lead(ii) iodide[J]. Journal of the American Chemical Society, 137, 8696-8699(2015).
[7] Jeng J Y, Chiang Y F, Lee M H et al. CH3NH3PbI3 perovskite/fullerene planar-heterojunction hybrid solar cells[J]. Advanced Materials, 25, 3727-3732(2013).
[8] Shen D H, Yu X, Cai X et al. Understanding the solvent-assisted crystallization mechanism inherent in efficient organic-inorganic halide perovskite solar cells[J]. Journal of Materials Chemistry A, 2, 20454-20461(2014).
[9] Lv M H, Dong X, Fang X et al. A promising alternative solvent of perovskite to induce rapid crystallization for high-efficiency photovoltaic devices[J]. Rsc Advances, 5, 20521-20529(2015).
[10] Nie W Y, Tsai H H, Asadpour R et al. High-efficiency solution-processed perovskite solar cells with millimeter-scale grains[J]. Science, 347, 522-525(2015).
[11] Li X, Bi D Q, Yi C Y et al. A vacuum flash-assisted solution process for high-efficiency large-area perovskite solar cells[J]. Science, 353, 58-62(2016).
[12] Noel N K, Abate A, Stranks S D et al. Enhanced photoluminescence and solar cell performance via lewis base passivation of organic inorganic lead halide perovskites[J]. Acs Nano, 8, 9815-9821(2014).
[13] Li T T, Pan Y F, Wang Z et al. Additive engineering for highly efficient organic-inorganic halide perovskite solar cells: Recent advances and perspectives[J]. Journal of Materials Chemistry A, 5, 12602-12652(2017).
[14] Kim M, Kim G H, Oh K S et al. High-temperature-short-time annealing process for high-performance large-area perovskite solar cells[J]. Acs Nano, 11, 6057-6064(2017).
[15] Kung P K, Li M H, Lin P Y et al. A review of inorganic hole transport materials for perovskite solar cells[J]. Advanced Materials Interfaces, 5, 1800882(2018).
[16] Shin S S, Lee S J, Seok S I. Metal oxide charge transport layers for efficient and stable perovskite solar cells[J]. Advanced Functional Materials, 29, 1900455(2019).
[17] Raza E, Aziz F, Ahmad Z. Stability of organometal halide perovskite solar cells and role of HTMs: Recent developments and future directions[J]. Rsc Advances, 8, 20952-20967(2018).
[18] Abrusci A, Stranks S D, Docampo P et al. High-performance perovskite-polymer hybrid solar cells via electronic coupling with fullerene monolayers[J]. Nano Letters, 13, 3124-3128(2013).
[19] Qiao R, Zuo L J. Self-assembly monolayers boosting organic-inorganic halide perovskite solar cell performance[J]. Journal of Materials Research, 33, 387-400(2018).
[20] Hui W, Yang Y G, Xu Q et al. Red-carbon-quantum-dot-doped SnO2 composite with enhanced electron mobility for efficient and stable perovskite solar cells[J]. Advanced Materials, 32, 1906374(2020).
[21] Wasserscheid P, Keim W. Ionic liquids—New "solutions" for transition metal catalysis[J]. Angewandte Chemie-International Edition, 39, 3772-3789(2000).
[22] Zhou F, Liang Y M, Liu W M. Ionic liquid lubricants: designed chemistry for engineering applications[J]. Chemical Society Reviews, 38, 2590-2599(2009).
[23] Endres F, Bukowski M, Hempelmann R et al. Electrodeposition of nanocrystalline metals and alloys from ionic liquids[J]. Angewandte Chemie-International Edition, 42, 3428-3430(2003).
[24] Welton T. Room-temperature ionic liquids. Solvents for synthesis and catalysis[J]. Chemical Reviews, 99, 2071-2083(1999).
[25] Khan M R, Premadasa U I, Cimatu K L A. Role of the cationic headgroup to conformational changes undergone by shorter alkyl chain surfactant and water molecules at the air-liquid interface[J]. Journal of Colloid and Interface Science, 568, 221-233(2020).
[26] Sandoval A P, Feliu J M, Torresi R M et al. Electrochemical properties of poly(3,4-ethylenedioxythiophene) grown on Pt(111) in imidazolium ionic liquids[J]. Rsc Advances, 4, 3383-3391(2014).
[27] Visser A E, Swatloski R P, Reichert W M et al. Task-specific ionic liquids for the extraction of metal ions from aqueous solutions[J]. Chemical Communications, 1, 135-136(2001).
[28] Ahmed E, Breternitz J, Groh M F et al. Ionic liquids as crystallisation media for inorganic materials[J]. Crystengcomm, 14, 4874-4885(2012).
[29] Shi J S, Gao Y R, Gao X et al. Fluorinated low-dimensional ruddlesden-popper perovskite solar cells with over 17% power conversion efficiency and improved stability[J]. Advanced Materials, 31, 1901673(2019).
[30] Chen H R, Xia Y D, Wu B et al. Critical role of chloride in organic ammonium spacer on the performance of Low-dimensional Ruddlesden-Popper perovskite solar cells[J]. Nano Energy, 56, 373-381(2019).
[31] Quan L N, Yuan M J, Comin R et al. Ligand-stabilized reduced-dimensionality perovskites[J]. Journal of the American Chemical Society, 138, 2649-2655(2016).
[32] Smith I C, Hoke E T, Solis-Ibarra D et al. A layered hybrid perovskite solar-cell absorber with enhanced moisture stability[J]. Angewandte Chemie-International Edition, 53, 11232-11235(2014).
[33] Mitzi D B. Templating and structural engineering in organic-inorganic perovskites[J]. Journal of the Chemical Society-Dalton Transactions, 1, 1-12(2001).
[34] Kim H S, Lee C R, Im J H et al. Lead Iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%[J]. Scientific Reports, 2, 1-7(2012).
[35] Fatemi M H, Izadiyan P. Cytotoxicity estimation of ionic liquids based on their effective structural features[J]. Chemosphere, 84, 553-563(2011).
[36] Earle M J, Seddon K R. Ionic liquids. Green solvents for the future[J]. Pure and Applied Chemistry, 72, 1391-1398(2000).
[37] Marsh K N, Boxall J A, Lichtenthaler R. Room temperature ionic liquids and their mixtures - A review[J]. Fluid Phase Equilibria, 219, 93-98(2004).
[38] Seo J Y, Matsui T, Luo J S et al. Ionic liquid control crystal growth to enhance planar perovskite solar cells efficiency[J]. Advanced Energy Materials, 6, 1600767(2016).
[39] Chao L F, Xia Y D, Li B X et al. Room-temperature molten salt for facile fabrication of efficient and stable perovskite solar cells in ambient air[J]. Chem., 5, 995-1006(2019).
[40] Bonhote P, Dias A P, Papageorgiou N et al. Hydrophobic, highly conductive ambient-temperature molten salts[J]. Inorganic Chemistry, 35, 1168-1178(1996).
[41] Reichert W M, Holbrey J D, Vigour K B et al. Approaches to crystallization from ionic liquids: complex solvents-complex results, or, a strategy for controlled formation of new supramolecular architectures?[J]. Chemical Communications, 46, 4767-4779(2006).
[42] Ball J M, Petrozza A. Defects in perovskite-halides and their effects in solar cells[J]. Nature Energy, 1, 1-13(2016).
[43] Li C B, Wang A L, Xie L S et al. Secondary lateral growth of MAPbI(3) grains for the fabrication of efficient perovskite solar cells[J]. Journal of Materials Chemistry C, 8, 3217-3225(2020).
[44] Schulz P. Interface design for metal halide perovskite solar cells[J]. Acs Energy Letters, 3, 1287-1293(2018).
[45] Tejedor C, Flores F. A simple approach to heterojunctions[J]. Journal of Physics C: Solid State Physics, 11(1978).
[46] Yang D, Yang R X, Ren X D et al. Hysteresis-suppressed high-efficiency flexible perovskite solar cells using solid-state ionic-liquids for effective electron transport[J]. Advanced Materials, 28, 5206-5213(2016).
[47] Wu Q L, Zhou W R, Liu Q et al. Solution-processable ionic liquid as an independent or modifying electron transport layer for high-efficiency perovskite solar cells[J]. Acs Applied Materials & Interfaces, 8, 34464-34473(2016).
[48] Calio L, Salado M, Kazim S et al. A generic route of hydrophobic doping in hole transporting material to increase longevity of perovskite solar cells[J]. Joule, 2, 1800-1815(2018).
[49] Zhang H, Shi Y T, Yan F et al. A dual functional additive for the HTM layer in perovskite solar cells[J]. Chemical Communications, 50, 5020-5022(2014).
[50] Heo S, Seo G, Lee Y et al. Origins of high performance and degradation in the mixed perovskite solar cells[J]. Adv. Mater., 31, 1805438(2019).
[51] Nickel N H, Lang F, Brus V V et al. Unraveling the light-induced degradation mechanisms of CH3NH3PbI3 perovskite films[J]. Advanced Electronic Materials, 3, 1700158(2017).
[52] Hong C Y, Hsieh T Y, Wei T C et al. Improving the stability of a liquid-type perovskite solar cell by capping spiro-OMeTAD layer onto CH3NH3PbI3/TiO2 film[J]. Chemistry Letters, 44, 1446-1448(2015).
[53] Huang H H, Shih Y C, Wang L et al. Boosting the ultra-stable unencapsulated perovskite solar cells by using montmorillonite/CH3NH3PbI3 nanocomposite as photoactive layer[J]. Energy & Environmental Science, 12, 1265-1273(2019).
[54] Zhang M H, Tai M Q, Li X et al. Improved moisture stability of perovskite solar cells using N719 dye molecules[J]. Solar Rrl, 3, 1900345(2019).
[55] Zhang J J, Tian J W, Fan J J et al. Graphdiyne: A brilliant hole accumulator for stable and efficient planar perovskite solar cells[J]. Small, 16, 1907290(2020).
[56] Salim K M M, Koh T M, Bahulayan D et al. Extended absorption window and improved stability of cesium-based triple-cation perovskite solar cells passivated with perfluorinated organics[J]. Acs Energy Letters, 3, 1068-1076(2018).
[57] Liu D, Shao Z P, Gui J Z et al. A polar-hydrophobic ionic liquid induces grain growth and stabilization in halide perovskites[J]. Chemical Communications, 55, 11059-11062(2019).
[58] Wang J, Ye X X, Wang Y Y et al. Halide perovskite based on hydrophobic ionic liquid for stability improving and its application in high-efficient photovoltaic cell[J]. Electrochimica Acta, 303, 133-139(2019).
[59] Du J L, Wang Y L, Zhang Y et al. Ionic liquid-assisted improvements in the thermal stability of CH3NH3PbI3 perovskite photovoltaics[J]. Physica Status Solidi-Rapid Research Letters, 12, 1800130(2018).
[60] Xia R, Fei Z F, Drigo N et al. Retarding thermal degradation in hybrid perovskites by ionic liquid additives[J]. Advanced Functional Materials, 29, 1902021(2019).
[61] Bai S, Da P M, Li C et al. Planar perovskite solar cells with long-term stability using ionic liquid additives[J]. Nature, 571, 245-250(2019).
[62] Chao L, Niu T, Xia Y et al. Ionic liquid for perovskite solar cells: an emerging solvent engineering technology[J]. Accounts of Materials Research, 2, 1059-1070(2021).
[63] Chen S, Xiao X, Gu H et al. Iodine reduction for reproducible and high-performance perovskite solar cells and modules[J]. Science Advances, 7(2021).
[64] Chen H, Xia Y, Wu B et al. Critical role of chloride in organic ammonium spacer on the performance of low-dimensional Ruddlesden-Popper perovskite solar cells[J]. Nano energy, 56, 373-381(2019).
[65] Ren H, Yu S, Chao L et al. Efficient and stable Ruddlesden–Popper perovskite solar cell with tailored interlayer molecular interaction[J]. Nature Photonics, 14, 154-163(2020).
[66] Qiu J, Xia Y, Chen Y et al. Management of crystallization kinetics for efficient and stable low‐dimensional Ruddlesden‑Popper (LDRP) lead‐free perovskite solar cells[J]. Advanced Science, 6, 1800793(2019).
[67] Zhu Z, Chueh C C, Li N et al. Realizing efficient lead‐free formamidinium tin triiodide perovskite solar cells via a sequential deposition route[J]. Advanced materials, 30, 1703800(2018).
[68] Chen Y, Sun Y, Peng J et al. Tailoring organic cation of 2D air‐stable organometal halide perovskites for highly efficient planar solar cells[J]. Advanced Energy Materials, 7, 1700162(2017).
[69] Liao W, Zhao D, Yu Y et al. Lead‐free inverted planar formamidinium tin triiodide perovskite solar cells achieving power conversion efficiencies up to 6.22%[J]. Advanced Materials, 28, 9333-9340(2016).
[70] Son D-Y, Kim S-G, Seo J-Y et al. Universal approach toward hysteresis-free perovskite solar cell via defect engineering[J]. Journal of the American Chemical Society, 140, 1358-1364(2018).
[71] Shen D, Luo C, Zheng R et al. Improvement of photoluminescence intensity and film morphology of perovskite by Ionic liquids additive[C]. Xiamen, 257(2021).
[72] Wu G, Liang R, Zhang Z et al. 2D Hybrid halide perovskites: structure, properties, and applications in solar cells[J]. Small, 17, 2103514(2021).
[73] Liang C, Gu H, Xia Y et al. Two-dimensional Ruddlesden–Popper layered perovskite solar cells based on phase-pure thin films[J]. Nature Energy, 6, 38-45(2021).
[74] Quan L N, Yuan M, Comin R et al. Ligand-stabilized reduced-dimensionality perovskites[J]. Journal of the American Chemical Society, 138, 2649-2655(2016).
[75] Tsai H, Asadpour R, Blancon J C et al. Design principles for electronic charge transport in solution-processed vertically stacked 2D perovskite quantum wells[J]. Nature communications, 9, 1-9(2018).
[76] Tsai H, Nie W, Blancon J C et al. High-efficiency two-dimensional Ruddlesden‑Popper perovskite solar cells[J]. Nature, 536, 312-316(2016).
[77] Yan K, Long M, Zhang T et al. Hybrid halide perovskite solar cell precursors: Colloidal chemistry and coordination engineering behind device processing for high efficiency[J]. Journal of the American Chemical Society, 137, 4460-4468(2015).
[78] McMeekin D P, Wang Z, Rehman W et al. Crystallization kinetics and morphology control of formamidinium‑cesium mixed‐cation lead mixed‐halide perovskite via tunability of the colloidal precursor solution[J]. Advanced Materials, 29, 1607039(2017).
[79] Liu C, Fang Z, Sun J et al. Imidazolium ionic liquid as organic spacer for tuning the excitonic structure of 2d perovskite materials[J]. Acs Energy Letters, 5, 3617-3627(2020).
[80] Tsai H H, Nie W Y, Blancon J C et al. High-efficiency two-dimensional Ruddlesden-Popper perovskite solar cells[J]. Nature, 536, 312-316(2016).
[81] Cao D H, Stoumpos C C, Farha O K et al. 2D homologous perovskites as light-absorbing materials for solar cell applications[J]. Journal of the American Chemical Society, 137, 7843-7850(2015).
[82] Stoumpos C C, Cao D H, Clark D J et al. Ruddlesden-Popper hybrid lead iodide perovskite 2d homologous semiconductors[J]. Chemistry of Materials, 28, 2852-2867(2016).
[83] Ren H, Yu S D, Chao L F et al. Efficient and stable Ruddlesden-Popper perovskite solar cell with tailored interlayer molecular interaction[J]. Nature Photonics, 14, 154-163(2020).
[84] Marchenko E I, Fateev S A, Petrov A A et al. Database of two-dimensional hybrid perovskite materials: Open-access collection of crystal structures, band gaps, and atomic partial charges predicted by machine learning[J]. Chemistry of Materials, 32, 7383-7388(2020).
[85] Blancon J C, Stier A V, Tsai H et al. Scaling law for excitons in 2D perovskite quantum wells[J]. Nature Communications, 9, 1-10(2018).
[86] Even J, Pedesseau L, Katan C. Understanding quantum confinement of charge carriers in layered 2d hybrid perovskites[J]. Chemphyschem, 15, 3733-3741(2014).
[87] Straus D B, Kagan C R. Electrons, excitons, and phonons in two-dimensional hybrid perovskites: Connecting structural, optical, and electronic properties[J]. Journal of Physical Chemistry Letters, 9, 1434-1447(2018).
[88] Kamminga M E, Fang H H, Filip M R et al. Confinement effects in low-dimensional lead iodide perovskite hybrids[J]. Chemistry of Materials, 28, 4554-4562(2016).
[89] Zhang Q, Chu L Q, Zhou F et al. Excitonic properties of chemically synthesized 2d organic-inorganic hybrid perovskite nanosheets[J]. Advanced Materials, 30, 1704055(2018).
[90] Mao L L, Ke W J, Pedesseau L et al. Hybrid dion-Jacobson 2D lead iodide perovskites[J]. Journal of the American Chemical Society, 140, 3775-3783(2018).
[91] Ahmad S, Fu P, Yu S W et al. Dion-Jacobson phase 2d layered perovskites for solar cells with ultrahigh stability[J]. Joule, 3, 794-806(2019).
[92] Li X T, Ke W J, Traore B et al. Two-dimensional dion-jacobson hybrid lead iodide perovskites with aromatic diammonium cations[J]. Journal of the American Chemical Society, 141, 12880-12890(2019).
Get Citation
Copy Citation Text
Chenhong XIANG, Shu HU, Pingyuan YAN, Chengqiang WANG, Heng LI, Chuanxiang SHENG. Effects of Ionic Liquids on the Properties of Low‑dimensional Layered Organic⁃Inorganic Hybrid Perovskite Films and Devices[J]. Optoelectronic Technology, 2022, 42(4): 254
Category: Study Report
Received: Apr. 24, 2022
Accepted: --
Published Online: Dec. 23, 2022
The Author Email: SHENG Chuanxiang (cxsheng@njust.edu.cn)