Chinese Journal of Lasers, Volume. 40, Issue 8, 806003(2013)
Spectral Properties of Tm3+-Doped Silica Glasses and Laser Behaviors of Fibers by Sol-Gel Technology
[1] [1] D Y Shen, J K Sahu, W A Clarkson. High-power widely tunable Tm∶fibre lasers pumped by an Er, Yb co-doped fibre laser at 1.6 μm [J]. Opt Express, 2006, 14(13): 6084-6090.
[2] [2] W A Clarkson, N P Barnes, P W Turner, et al.. High-power cladding-pumped Tm-doped silica fiber laser with wavelength tuning from 1860 to 2090 nm [J]. Opt Lett, 2002, 27(22): 1989-1991.
[3] [3] Z S Sacks, Z Schiffer, D David. Long wavelength operation of double-clad Tm∶silica fiber lasers[C]. SPIE, 2007, 6453: 645320.
[4] [4] B M Walsh. Review of Tm and Ho materials: spectroscopy and lasers[J]. Laser Phys, 2009,19(4): 855-866.
[5] [5] M Richardson, L Shah, R A Sims, et al.. High power thulium fiber lasers[C]. SPPCom, 2011. SOWD1.
[6] [6] T F Morse, K Oh, L J Reinhart. Carbon dioxide detection using a co-doped Tm-Ho optical fiber[C]. SPIE, 1995, 2510: 158-164.
[7] [7] K Li, G Zhang, L Hu. Watt-level ~2 μm laser output in Tm3+-doped tungsten tellurite glass double-cladding fiber[J]. Opt Lett, 2010, 35(24): 4136-4138.
[8] [8] J Wu, Z Yao, J Zong, et al.. Highly efficient high-power thulium-doped germanate glass fiber laser[J]. Opt Lett, 2007, 32(6): 638-640.
[9] [9] B M Walsh, N P Barnes. Comparison of Tm∶ZBLAN and Tm∶silica fiber lasers; spectroscopy and tunable pulsed laser operation around 1.9 μm[J]. Appl Phys B, 2004, 78(3-4): 325-333.
[10] [10] G Frith, D G Lancaster, S D Jackson. 85 W Tm3+-doped silica fibre laser[J]. Electron Lett, 2005, 41(12): 687-688.
[11] [11] H Lin, X Wang, L Lin, et al.. Near-infrared emission character of Tm3+-doped heavy metal tellurite glasses for optical amplifiers and 1.8 μm infrared laser[J]. J Phys D: Appl Phys, 2007, 40(12): 3567-3572.
[12] [12] T Yamamoto, Y Miyajima, T Komukai. 1.9 μm Tm-doped silica fibre laser pumped at 1.57 μm[J]. Electron Lett, 1994, 30(3): 220-221.
[13] [13] P F Moulton, G A Rines, E V Slobodtchikov, et al.. Tm-doped fiber lasers: fundamentals and power scaling [J]. IEEE J Sel Top Quantum Electron, 2009, 15(1): 85-92.
[14] [14] S D Jackson, S Mossman. Efficiency dependence on the Tm3+ and Al3+ concentrations for Tm3+-doped silica double-clad fiber lasers[J]. Appl Opt, 2003, 42(15): 2702-2707.
[15] [15] S D Jackson. Cross relaxation and energy transfer upconversion processes relevant to the functioning of 2 μm Tm3+-doped silica fibre lasers[J]. Opt Commun, 2004, 230(1-3): 197-203.
[16] [16] Wang Wentao, Ruan Ling, Ning Ding, et al.. Researches on dopant concentration of a thulium-doped silica fiber[J]. Optical Communication Technology, 2000, (4): 273-276.
[17] [17] S Tammela, M Soderfund, J Koponen, et al.. The potential of direct nanoparticle deposition for the next generation of optical fibers[C]. SPIE, 2006, 6116: 611616.
[18] [18] M C Ferrara, C Blasi. Sol-gel synthesis and characterisation of erbium-modified silica glasses[J]. Mater Lett, 2004, 58(9): 1490-1493.
[19] [19] Alain Pastouret, Ekaterina Burov, David Boivin, et al.. Amplifying Optical Fiber and Method of Manufacturing[P]. U S Patent, 20100118388, 2010-5-13.
[20] [20] A Biswas, J Sahu, H N Acharya. Sol-gel synthesis of Pr-doped silica glasses[J]. Mater Sci Eng B, 1996, 41(3): 329-332.
[21] [21] S Liu, H Li, Y Tang, et al.. Fabrication and spectroscopic properties of Yb3+-doped silica glasses using the sol-gel method[J]. Chin Opt Lett, 2012, 10(8): 081601
[22] [22] F Artizzu, F Quochi, M Saba, et al.. Silica sol-gel glasses incorporating dual-luminescent Yb quinolinolato complex: processing, emission and photosensitising properties of the ‘antenna’ ligand [J]. Dalton Transactions, 2012, 41(42): 13147-13153.
[23] [23] A J Silversmith, N T T Nguyen, D L Campbell, et al.. Fluorescence yield in rare-earth-doped sol-gel silicate glasses[J]. J Lumin, 2009, 129(12): 1501-1504.
[24] [24] Sun Guozhong, Zhao Quanlin, Liu Haitao, et al.. Silica glass prepared by sol-gel method[J]. Chemical Industry Times, 1999, (4): 20-22.
[25] [25] G X Chen, Q Y Zhang, G F Yang, et al.. Mid-infrared emission characteristic and energy transfer of Ho3+-doped tellurite glass sensitized by Tm3+ [J]. J Fluorescence, 2007, 17(3): 301-307.
[26] [26] B Judd. Optical absorption intensities of rare-earth ions[J]. Phys Rev, 1962, 127(3): 750-761.
[27] [27] G S Ofelt. Intensities of crystal spectra of rare-earth ions[J]. J Chem Phys, 1962, 37(3): 511-520.
[28] [28] J Heo, Y B Shin, J N Jang. Spectroscopic analysis of Tm3+ in PbO-Bi2O3-Ga2O3 glass[J]. Appl Opt, 1995, 34(21): 4284-4289.
[29] [29] H Fan, G Gao, G Wang, et al.. Tm3+ doped Bi2O3-GeO2-Na2O glasses for 1.8 μm fluorescence[J]. Opt Mater, 2010, 32 (5): 5627-631.
[30] [30] Li Kefeng, Wang Guonian, Hu Lili, et al.. Effects of WO3 contents on the thermal and spectroscopic properties of Tm3+-doped TeO2-WO3-La2O3 glasses[J]. J Inorganic Materials, 2010, 25(4): 429-434.
[31] [31] D M Shi, Q Y Zhang, G F Yang, et al.. Spectroscopic properties and energy transfer in Ga2O3-Bi2O3-PbO-GeO2 glasses codoped with Tm3+ and Ho3+[J]. J Non-Cryst Solids, 2007, 353(16-17): 1508-1514.
[32] [32] S A Payne, L L Chase, L K Smith, et al.. Infrared cross-section measurements for crystals doped with Er3+, Tm3+, and Ho3+[J]. IEEE J Quantum Electron, 1992, 28(11): 2619-2630.
[33] [33] B Zhou, E Y-B Pun, H Lin, et al.. Judd-Ofelt analysis, frequency upconversion, and infrared photoluminescence of Ho3+-doped and Ho3+/Yb3+-codoped lead bismuth gallate oxide glasses[J]. J Appl Phys, 2009, 106(10): 103105.
[34] [34] S D Jackson,T A King. Theoretical modeling of Tm-doped silica fiber lasers[J]. J Lightwave Technol, 1999, 17(5): 948-956.
[35] [35] X Zou, H Toratani. Spectroscopic properties and energy transfers in Tm3+ singly- and Tm3+/Ho3+ doubly-doped glasses[J]. J Non-Cryst Solids, 1996,195(1-2): 113-124.
[36] [36] D Zhuo, G Qi, B Peng. Determination of water content in phosphate laser glass[J]. Chin Phys Lasers, 1986, 13(3): 212-215.
[37] [37] Wang Deping, Huang Wenhai, Zhou Zhihao. Effect of hydroxyl concentration on the properties of commercial soda lime silica glasses[J]. J Building Materials, 1998, 1(4): 375-378.
[38] [38] J Kirchhof, S Unger, A Schwuchow, et al.. The influence of Yb2+ ions on optical properties and power stability of ytterbium doped laser fibers[C]. SPIE, 2010, 7598: 759801
Get Citation
Copy Citation Text
Li Zhilan, Wang Shikai, Wang Xin, Guan Peiwen, Li Wentao, Wang Meng, Yu Chunlei, Zhang Lei, Li Kefeng, Chen Danping, Hu Lili. Spectral Properties of Tm3+-Doped Silica Glasses and Laser Behaviors of Fibers by Sol-Gel Technology[J]. Chinese Journal of Lasers, 2013, 40(8): 806003
Category: materials and thin films
Received: Mar. 25, 2013
Accepted: --
Published Online: Jul. 9, 2013
The Author Email: Zhilan Li (zhilanli@163.com)