Acta Optica Sinica, Volume. 43, Issue 14, 1412001(2023)
Large Deformation Measurement Method of Speckle Images Based on Deep Learning
[1] Yamaguchi I. A laser-speckle strain gauge[J]. Journal of Physics E: Scientific Instruments, 14, 1270-1273(1981).
[2] Peters W H, Ranson W F. Digital imaging techniques in experimental stress analysis[J]. Optical Engineering, 21, 427-431(1982).
[3] Sutton M A, Wolters W J, Peters W H et al. Determination of displacements using an improved digital correlation method[J]. Image and Vision Computing, 1, 133-139(1983).
[4] Pan B. Bias error reduction of digital image correlation using Gaussian pre-filtering[J]. Optics and Lasers in Engineering, 51, 1161-1167(2013).
[5] Su Z L, Lu L, He X Y et al. Recursive-iterative digital image correlation based on salient features[J]. Optical Engineering, 59, 034111(2020).
[6] Mazzoleni P, Matta F, Zappa E et al. Gaussian pre-filtering for uncertainty minimization in digital image correlation using numerically-designed speckle patterns[J]. Optics and Lasers in Engineering, 66, 19-33(2015).
[7] Jiang L B, Xie H M, Pan B. Speeding up digital image correlation computation using the integral image technique[J]. Optics and Lasers in Engineering, 65, 117-122(2015).
[8] Tan F X, Xiao S D, Li S Y et al. Digital image correlation method based on dense feature matching[J]. Laser & Optoelectronics Progress, 58, 1612001(2021).
[9] Li G H, Ma W L, Zhu T T et al. Thermal deformation measurement of hollow disk based on digital image correlation method[J]. Laser & Optoelectronics Progress, 58, 1412003(2021).
[10] Wang Y H, Zhu Y L, Gao Q X et al. Position and pose measurement of spatial object based on digital image correlation[J]. Acta Optica Sinica, 42, 0812001(2022).
[11] Pan J Y, Zhang S Q, Su Z L et al. Measuring three-dimensional deformation of underwater propellers based on digital image correlation[J]. Acta Optica Sinica, 41, 1212001(2021).
[12] Bruck H A, McNeill S R, Sutton M A et al. Digital image correlation using Newton-Raphson method of partial differential correction[J]. Experimental Mechanics, 29, 261-267(1989).
[13] Baker S, Matthews I. Equivalence and efficiency of image alignment algorithms[C](2003).
[14] Baker S, Matthews I. Lucas-kanade 20 years on: a unifying framework[J]. International Journal of Computer Vision, 56, 221-255(2004).
[15] Blaber J, Adair B, Antoniou A. Ncorr: open-source 2D digital image correlation Matlab software[J]. Experimental Mechanics, 55, 1105-1122(2015).
[16] Jiang Z Y, Qian K M, Miao H et al. Path-independent digital image correlation with high accuracy, speed and robustness[J]. Optics and Lasers in Engineering, 65, 93-102(2015).
[17] Zhang L Q, Wang T Y, Jiang Z Y et al. High accuracy digital image correlation powered by GPU-based parallel computing[J]. Optics and Lasers in Engineering, 69, 7-12(2015).
[18] Liu X Y, Gong Y, Li R L et al. Non-iterative gray-gradient algorithm based on BP artificial neural network in digital image correlation[J]. Machine Tool & Hydraulics, 46, 7-11(2018).
[19] Min H G, On H I, Kang D J et al. Strain measurement during tensile testing using deep learning-based digital image correlation[J]. Measurement Science and Technology, 31, 015014(2020).
[20] Boukhtache S, Abdelouahab K, Berry F et al. When deep learning meets digital image correlation[J]. Optics and Lasers in Engineering, 136, 106308(2021).
[21] Yang R, Li Y, Zeng D et al. Deep DIC: deep learning-based digital image correlation for end-to-end displacement and strain measurement[J]. Journal of Materials Processing Technology, 302, 117474(2022).
[22] Huang J, Sun C R, Lin X L. Displacement field measurement of speckle images using convolutional neural network[J]. Acta Optica Sinica, 41, 2012002(2021).
[23] Ronneberger O, Fischer P, Brox T. U-Net: convolutional networks for biomedical image segmentation[M]. Navab N, Hornegger J, Wells W M, et al. Medical image computing and computer-assisted intervention-MICCAI 2015. Lecture notes in computer science, 9351, 234-241(2015).
[24] Woo S, Park J, Lee J Y et al. CBAM: convolutional block attention module[M]. Ferrari V, Hebert M, Sminchisescu C, et al. Computer vision-ECCV 2018. Lecture notes in computer science, 11211, 3-19(2018).
[25] Chollet F. Xception: deep learning with depthwise separable convolutions[C], 1800-1807(2017).
[26] Reu P L, Toussaint E, Jones E et al. DIC challenge: developing images and guidelines for evaluating accuracy and resolution of 2D analyses[J]. Experimental Mechanics, 58, 1067-1099(2018).
[27] Sur F, Blaysat B, Grédiac M. Rendering deformed speckle images with a Boolean model[J]. Journal of Mathematical Imaging and Vision, 60, 634-650(2018).
[28] Dosovitskiy A, Fischer P, Ilg E et al. FlowNet: learning optical flow with convolutional networks[C], 2758-2766(2016).
Get Citation
Copy Citation Text
Hong Xiao, Chengnan Li, Mingchi Feng. Large Deformation Measurement Method of Speckle Images Based on Deep Learning[J]. Acta Optica Sinica, 2023, 43(14): 1412001
Category: Instrumentation, Measurement and Metrology
Received: Dec. 2, 2022
Accepted: Mar. 20, 2023
Published Online: Jul. 13, 2023
The Author Email: Mingchi Feng (fengmc@cqupt.edu.cn)