Chinese Journal of Lasers, Volume. 50, Issue 14, 1410002(2023)

Determination of Boundary Value of Extinction Coefficient Based on Improved Douglas-Peucker Algorithm

Ruonan Fei, Zheng Kong, Zhenfeng Gong, and Liang Mei*
Author Affiliations
  • School of Optoelectronic Engineering and Instrumentation Science, Dalian University of Technology, Dalian 116024, Liaoning, China
  • show less
    References(36)

    [1] Lü Y. A remote sensing study on monitoring of atmospheric particulate matters pollution using ground-based and satellite lidar[D](2018).

    [2] Di H G, Hou X L, Zhao H et al. Detections and analyses of aerosol optical properties under different weather conditions using multi-wavelength Mie lidar[J]. Acta Physica Sinica, 63, 244206(2014).

    [3] Zhai C Z, Zhou Q, Yu J Y et al. The application of the polarization-Mie lidar in environmental monitoring[J]. Laser Journal, 34, 34-36(2013).

    [4] Chen W B, Kuze H, Uchiyama A et al. One-year observation of urban mixed layer characteristics at Tsukuba, Japan using a micro pulse lidar[J]. Atmospheric Environment, 35, 4273-4280(2001).

    [5] Yang Y, Guan P, Mei L. A scanning Scheimpflug lidar system developed for urban pollution monitoring[J]. EPJ Web of Conferences, 176, 01013(2018).

    [6] Palm S P, Melfi S H, Carter D L. New airborne scanning lidar system: applications for atmospheric remote sensing[J]. Applied Optics, 33, 5674-5681(1994).

    [7] Mo Z S, Bu L B, Wang Q et al. Estimation of particulate matter mass concentration based on generalized regression neural network model combining aerosol extinction coefficient and meteorological elements[J]. Chinese Journal of Lasers, 49, 1710001(2022).

    [8] Klett J D. Stable analytical inversion solution for processing lidar returns[J]. Applied Optics, 20, 211-220(1981).

    [9] Fernald F G. Analysis of atmospheric lidar observations: some comments[J]. Applied Optics, 23, 652-653(1984).

    [10] Kovalev V A. Lidar measurement of the vertical aerosol extinction profiles with range-dependent backscatter-to-extinction ratios[J]. Applied Optics, 32, 6053-6065(1993).

    [11] Marchant C C, Moon T K, Gunther J H. An iterative least square approach to elastic-lidar retrievals for well-characterized aerosols[J]. IEEE Transactions on Geoscience and Remote Sensing, 48, 2430-2444(2010).

    [12] Chen T, Wu D C, Liu B et al. A new method for determining aerosol backscatter coefficient boundary value in the lower troposphere[J]. Acta Optica Sinica, 30, 1531-1536(2010).

    [13] Xiong X L, Feng S, Jiang L H et al. A novel method for determining the boundary value of the atmospheric extinction coefficient[J]. Journal of Optoelectronics·Laser, 22, 1699-1705(2011).

    [14] Xiong X L, Jiang L H, Feng S. Return signals processing method of Mie scattering lidar[J]. Infrared and Laser Engineering, 41, 89-95(2012).

    [15] Xiong X L, Jiang L H, Feng S et al. Using improved Newton method to determine the boundary value of atmospheric extinction coefficient[J]. Infrared and Laser Engineering, 41, 1744-1749(2012).

    [16] Xiong X L, Jiang L H, Feng S et al. Constructing and solving the nonlinear equation of airborne lidar for determining the boundary value of the extinction coefficient for atmospheric aerosol in lower atmosphere[J]. Journal of Optoelectronics·Laser, 23, 1356-1362(2012).

    [17] Xiong X L, Jiang L H, Feng S et al. Determination of the boundary value of atmospheric aerosol extinction coefficient based on fixed point principle[J]. Journal of Optoelectronics·Laser, 23, 303-309(2012).

    [18] Li H X, Chang J H, Zhu L Y et al. Visibility inversion algorithm based on micro pulse lidar[J]. Journal of Electronic Measurement and Instrumentation, 31, 1555-1560(2017).

    [19] Sun G D, Qin L A, Zhang S L et al. A new method of measuring boundary value of atmospheric extinction coefficient[J]. Acta Physica Sinica, 67, 054205(2018).

    [20] Chen X N, Bi J P, Wang K X et al. Method for determining boundary value of extinction coefficient[J]. Laser & Optoelectronics Progress, 56, 240102(2019).

    [21] Yang B, Mo Z S, Liu H J et al. Study on abrupt signal processing method of atmospheric lidar (Invited)[J]. Infrared and Laser Engineering, 51, 20211117(2022).

    [22] Lü L H, Liu W Q, Zhang T S et al. Two data inversion algorithms of aerosol horizontal distribution detected by MPL and error analysis[J]. Spectroscopy and Spectral Analysis, 35, 1774-1778(2015).

    [23] Mei L. Atmospheric Scheimpflug lidar technique and its progress[J]. Laser & Optoelectronics Progress, 55, 090004(2018).

    [24] Liu Z, Li L M, Li H et al. Preliminary studies on atmospheric monitoring by employing a portable unmanned Mie-scattering Scheimpflug lidar system[J]. Remote Sensing, 11, 837(2019).

    [25] Mei L, Kong Z, Lin H Z et al. Recent advancements of the lidar technique based on the Scheimpflug imaging principle (Invited)[J]. Infrared and Laser Engineering, 50, 20210033(2021).

    [26] Kong Z, Liu Z, Zhang L S et al. Atmospheric pollution monitoring in urban area by employing a 450-nm lidar system[J]. Sensors, 18, 1880(2018).

    [27] Mei L, Kong Z, Guan P. Implementation of a violet Scheimpflug lidar system for atmospheric aerosol studies[J]. Optics Express, 26, A260-A274(2018).

    [28] Mei L, Guan P, Yang Y et al. Atmospheric extinction coefficient retrieval and validation for the single-band Mie-scattering Scheimpflug lidar technique[J]. Optics Express, 25, A628-A638(2017).

    [29] Mei L, Brydegaard M. Atmospheric aerosol monitoring by an elastic Scheimpflug lidar system[J]. Optics Express, 23, A1613-A1628(2015).

    [30] Mei L, Brydegaard M. Continuous-wave differential absorption lidar[J]. Laser & Photonics Review, 9, 629-636(2015).

    [31] Sasano Y. Tropospheric aerosol extinction coefficient profiles derived from scanning lidar measurements over Tsukuba, Japan, from 1990 to 1993[J]. Applied Optics, 35, 4941-4952(1996).

    [32] Douglas D H, Peucker T K. Algorithms for the reduction of the number of points required to represent a digitized line or its caricature[J]. Cartographica: the International Journal for Geographic Information and Geovisualization, 10, 112-122(1973).

    [33] Jurado J M, Alcázar A, Muñiz-Valencia R et al. Some practical considerations for linearity assessment of calibration curves as function of concentration levels according to the fitness-for-purpose approach[J]. Talanta, 172, 221-229(2017).

    [34] Andrade J M, Gómez-Carracedo M P. Notes on the use of Mandel’s test to check for nonlinearity in laboratory calibrations[J]. Analytical Methods, 5, 1145-1149(2013).

    [35] Van Loco J, Elskens M, Croux C et al. Linearity of calibration curves: use and misuse of the correlation coefficient[J]. Accreditation and Quality Assurance, 7, 281-285(2002).

    [36] Akritas M G, Papadatos N. Heteroscedastic one-way ANOVA and lack-of-fit tests[J]. Journal of the American Statistical Association, 99, 368-382(2004).

    Tools

    Get Citation

    Copy Citation Text

    Ruonan Fei, Zheng Kong, Zhenfeng Gong, Liang Mei. Determination of Boundary Value of Extinction Coefficient Based on Improved Douglas-Peucker Algorithm[J]. Chinese Journal of Lasers, 2023, 50(14): 1410002

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: remote sensing and sensor

    Received: Aug. 11, 2022

    Accepted: Sep. 22, 2022

    Published Online: Jul. 10, 2023

    The Author Email: Mei Liang (meiliang@dlut.edu.cn)

    DOI:10.3788/CJL221138

    Topics