Laser & Optoelectronics Progress, Volume. 61, Issue 14, 1400002(2024)
Artificial Intelligence-Assisted Diagnosis Technology and Its Advance Based on Glaucoma Imaging
[4] CheungCarol Y., 冉安然. 青光眼影像人工智能深度学习研究现状与展望[J]. 山东大学学报(医学版), 58, 24-32, 38(2020).
Cheung C Y, Ran A R. Artificial intelligence deep learning in glaucoma imaging: current progress and future prospect[J]. Journal of Shandong University (Health Sciences), 58, 24-32, 38(2020).
[25] Li F, Song D P, Chen H et al. Development and clinical deployment of a smartphone-based visual field deep learning system for glaucoma detection[J]. NPJ Digital Medicine, 3, 123(2020).
[26] Shen X L. The application of HRT, OCT, Humphrey’s field of view and electroretinogram bright negative wave response in glaucoma[D](2010).
[31] Qin Y S. Research on intelligent diagnosis of glaucoma based on deep learning[D](2019).
[33] Feng X F. Research and implementation of image-aided diagnosis of glaucoma based on deep learning[D](2020).
[34] Dong L, Li F. Joint optic disk and cup segmentation for glaucoma screening using a region-based deep learning network[J]. Control Engineering of China, 30, 894-902(2023).
[49] Wu G Y, Yuan Z Q, Liang Y M. Unsupervised denoising of retinal OCT images based on deep learning[J]. Acta Optica Sinica, 43, 2010002(2023).
Get Citation
Copy Citation Text
Mingyuan Li, Fengzhou Fang. Artificial Intelligence-Assisted Diagnosis Technology and Its Advance Based on Glaucoma Imaging[J]. Laser & Optoelectronics Progress, 2024, 61(14): 1400002
Category: Reviews
Received: Oct. 13, 2023
Accepted: Nov. 9, 2023
Published Online: Jul. 4, 2024
The Author Email: Fengzhou Fang (fzfang@tju.edu.cn)
CSTR:32186.14.LOP232292