Infrared Technology, Volume. 47, Issue 3, 326(2025)

Improved YOLOv7 for Multi-Target Detection of Infrared Images of Power Equipment

Dawei YANG1, Mingsheng YANG1, and Bo FU2
Author Affiliations
  • 1Zhuhai Power Supply Bureau, Guangdong Power Grid Co., Ltd, Zhuhai 519075, China
  • 2Guangdong Power Grid Electric Power Research Institute, Qingyuan 511538, China
  • show less
    References(16)

    [6] [6] Girshick R. Fast R-CNN[C]//2015 IEEE International Conference on Computer Vision(ICCV), IEEE, 2015: 1440-1448.

    [7] [7] REN S, HE K, Girshick R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2017, 39(6): 1137-1149.

    [8] [8] Redmon J, Divvala S, Girshick R, et al. You Only Look Once: Unified Real-Time Object Detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 779-788.

    [9] [9] Redmon J, Farhadi A. YOLO9000: Better, faster, stronger[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 7263-7271.

    [10] [10] Redmon J, Farhadi A. YOLOv3: An incremental improvement[J/OL]. arXiv: 1804.02767, 2018, https://arxiv.org/abs/1804.02767.

    [11] [11] Bochkovskiy A, WANG C Y, LIAO H Y M. YOLOv4: optimal speed and accuracy of object detection[J/OL]. arXiv: 2004.10934, 2020, https://arxiv.org/abs/2004.10934.

    [12] [12] LIU W, Anguelov D, Erhan D, et al. SSD: single shot multibox detector[C]//European Conference on Computer Vision, 2016: 21-37.

    [13] [13] LIN T Y, Goyal P, Girshick R, et al. Focal loss for dense object detection[C]//Proceedings of the IEEE International Conference on Computer Vision, 2017: 2980-2988.

    [15] [15] LIU Z Q, WANG H F. Automatic detection of transformer components in inspection images based on improved Faster R-CNN[J]. Energies, 2018, 11(12): 3496.

    [18] [18] Howard A G, ZHU M, CHEN B, et al. Mobilenets: Efficient convolutional neural networks for mobile vision applications[J/OL]. arXiv: 1704.04861, 2017, https://arxiv.org/abs/1704.04861.

    [19] [19] ZHENG Hanbo, LI Jinheng, LIU Yang, et al. Infrared target detection model for power equipment based on improved YOLOv3[J]. Transactions of the Chinese Electrotechnical Society, 2021, 36(7): 1389-1398.

    [22] [22] YANG L, ZHANG R Y, LI L, et al. Simam: A simple, parameter-free attention module for convolutional neural networks[C]//International Conference on Machine Learning, PMLR, 2021: 11863-11874.

    [23] [23] WANG J, XU C, YANG W, et al. A normalized Gaussian Wasserstein distance for tiny object detection[J]. arXiv preprint arXiv: 2110.13389, 2021.

    [24] [24] HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 7132-7141.

    [25] [25] WANG Q L, WU B G,ZHU P F, et al, ECA-Net: efficient channel attention for deep convolutional neural networks[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2020: 11531-11539.

    [26] [26] WOO S, PARK J, LEE J Y, et al. CBAM: Convolutional Block Attention Module[C]//Proceedings of the European Conference on Computer Vision (ECCV), 2018: 3-19.

    Tools

    Get Citation

    Copy Citation Text

    YANG Dawei, YANG Mingsheng, FU Bo. Improved YOLOv7 for Multi-Target Detection of Infrared Images of Power Equipment[J]. Infrared Technology, 2025, 47(3): 326

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Oct. 30, 2023

    Accepted: Apr. 18, 2025

    Published Online: Apr. 18, 2025

    The Author Email:

    DOI:

    Topics