Journal of Synthetic Crystals, Volume. 54, Issue 5, 825(2025)
Electrical Transport Properties of Two-Dimensional BC6N/BN Lateral Heterostructure
[1] PANG Q, QIAN J J, TANG Y X et al. First principles study on the type-Ⅱ g-C6N6/PtSSe heterojunction: a potential photocatalyst for overall water splitting. Materials Today Communications, 40, 109685(2024).
[2] HUANG M, LI Z H, CHENG F. Tunable electronic structures and interface contact in graphene/C3N van der Waals heterostructures. Acta Physica Sinica, 72, 147302(2023).
[3] ZHOU C Q, ZHANG H, LI K Y. First-principles study on photoelectric properties of Janus two-dimensional bilayer MoSSe/WSSe heterostructures. Journal of Synthetic Crystals, 52, 1668-1673(2023).
[4] BAO A D, MA Y Q, GUO X. First principles study on the structure and interface properties of GaSe/ZnS heterostructure. Journal of Synthetic Crystals, 53, 669-675(2024).
[5] WU H, TANG G P, XIAO S C et al. Research on two-dimensional graphene/VS2/BN van der waals multilayer heterostructure as anode material of LIBs. Acta Electronica Sinica, 52, 1543-1552(2024).
[6] CUI Z, WU H, BAI K F et al. Fabrication of a g-C3N4/MoS2 photocatalyst for enhanced RhB degradation. Physica E: Low-dimensional Systems and Nanostructures, 144, 115361(2022).
[7] WANG D, ZHANG Z W, HUANG B L et al. Few-layer WS2-WSe2 lateral heterostructures: influence of the gas precursor selenium/tungsten ratio on the number of layers. ACS Nano, 16, 1198-1207(2022).
[8] SUN X X, YIN S Q, YU H et al. A direction-sensitive photodetector based on the two-dimensional WSe2/MoSe2 lateral heterostructure with enhanced photoresponse. Results in Physics, 46, 106271(2023).
[9] LIU H B, LIU P Y, CHEN S Y et al. Computational investigation of structures and properties of graphene-borophene coplanar heterojunction. Journal of Atomic and Molecular Physics, 42, 81-86(2025).
[10] ZHAI F Y, ZHANG D B, CAO Z Q et al. The control of thermal conductivity in two-dimensional graphene/hexagonal boron nitride lateral heterostructures by pore defects. Journal of Atomic and Molecular Physics, 41, 72-77(2024).
[11] HERATH MUDIYANSELAGE D, DA B C, ADIVARAHAN J et al. β-Ga2O3-based heterostructures and heterojunctions for power electronics: a review of the recent advances. Electronics, 13, 1234(2024).
[12] MATSUI K, YOSHIURA K et al. One-shot multiple borylation toward BN-doped nanographenes. Journal of the American Chemical Society, 140, 1195-1198(2018).
[13] ABDULLAH N R, ABDULLAH B J, TANG C S et al. Properties of BC6N monolayer derived by first-principle computation: influences of interactions between dopant atoms on thermoelectric and optical properties. Materials Science in Semiconductor Processing, 135, 106073(2021).
[14] ABDULLAH N R, RASHID H O, TANG C S et al. Modeling electronic, mechanical, optical and thermal properties of graphene-like BC6N materials: role of prominent BN-bonds. Physics Letters A, 384, 126807(2020).
[15] SHI L B, YANG M, CAO S et al. Prediction of high carrier mobility for a novel two-dimensional semiconductor of BC6N: first principles calculations. Journal of Materials Chemistry C, 8, 5882-5893(2020).
[16] JIANG N N, XIE Y, WANG S F et al. Electronic structure and carrier mobility of BC6N/BN van der Waals heterostructure induced by in-plane strains. Applied Surface Science, 623, 157007(2023).
[17] HAN W, XIE Y, SONG Y L et al. Effect of tensile strain on the electronic structure, optical absorptivity, and power conversion efficiency of the BC6N/ZnO van der Waals heterostructure. Physica E: Low-dimensional Systems and Nanostructures, 115908(2024).
[18] XIE Y, JIANG N N, HAN W et al. Electric field tunable electronic structures and ultrahigh power conversion efficiency of BC6N/MoSe2 van der Waals heterostructure: a promising material for high-efficiency solar cell applications. Journal of Physics and Chemistry of Solids, 192, 112067(2024).
[19] JIN X W, XIE Y, HAN W et al. Biaxial strain-modulated power conversion efficiency, electronic structures, and optical properties of type-Ⅱ MoS2/BC6N vdW heterostructure: a density functional theory study. Materials Today Communications, 40, 110012(2024).
[20] EBRAHIMI M, HORRI A, SANAEEPUR M et al. A comparative computational study of tunneling transistors based on vertical graphene-hBCN heterostructures. Journal of Applied Physics, 127(2020).
[21] KRESSE G, FURTHMÜLLER J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Physical Review B, 54, 11169-11186(1996).
[22] TAYLOR J, GUO H, WANG J. Ab initio modeling of quantum transport properties of molecular electronic devices. Physical Review B, 63, 245407(2001).
[23] WALDRON D, HANEY P, LARADE B et al. Nonlinear spin current and magnetoresistance of molecular tunnel junctions. Physical Review Letters, 96, 166804(2006).
[24] PERDEW J P, BURKE K, ERNZERHOF M. Generalized gradient approximation made simple. Physical Review Letters, 77, 3865-3868(1996).
[25] KRESSE G, JOUBERT D. From ultrasoft pseudopotentials to the projector augmented-wave method. Physical Review B, 59, 1758-1775(1999).
[26] LI X, ZHANG Z, XI J Y et al. TransOpt. A code to solve electrical transport properties of semiconductors in constant electron-phonon coupling approximation. Computational Materials Science, 186, 110074(2021).
[27] CUI Y Y, FAN W, LIU X et al. Electronic conductivity of two-dimensional VS2 monolayers: a first principles study. Computational Materials Science, 200, 110767(2021).
[28] WANG B, WANG J. Spin polarized I-V characteristics and shot noise of Pt atomic wires. Physical Review B, 84, 165401(2011).
Get Citation
Copy Citation Text
You XIE, Xiaosa XIAO, Ningning JIANG, Tao ZHANG. Electrical Transport Properties of Two-Dimensional BC6N/BN Lateral Heterostructure[J]. Journal of Synthetic Crystals, 2025, 54(5): 825
Category:
Received: Nov. 21, 2024
Accepted: --
Published Online: Jul. 2, 2025
The Author Email: You XIE (xieyou@xust.edu.cn)