Electronics Optics & Control, Volume. 32, Issue 8, 18(2025)
An Object Tracking Algorithm with 3D Attention and Pyramid Decoder
[2] [2] ZHANG Z P, PENG H W. Deeper and wider Siamese networks for real-time visual tracking[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach: IEEE, 2019: 4586-4595.
[3] [3] PI Z X, GAO C X, SANG N. Siamese tracking with bilinear features[C]//The 6th Asian Conference on Pattern Recognition(ACPR). Cham: Springer, 2022: 421-435.
[4] [4] CHEN D, TANG F, DONG W M, et al. SiamCPN: visual tracking with the Siamese center-prediction network[J]. Computational Visual Media, 2021, 7: 253-265.
[5] [5] BERTINETTO L, VALMADRE J, HENRIQUES J F, et al. Fully-convolutional Siamese networks for object tracking[C]//European Conference on Computer Vision 2016 Workshops, Part II. Cham: Springer, 2016: 850-865.
[6] [6] SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[R]. Los Alamos: arXiv Preprint, 2014: arXiv: 1409. 1556.
[7] [7] XU Y D, WANG Z Y, LI Z X, et al. SiamFC++: towards robust and accurate visual tracking with target estimation guidelines[C]//Proceedings of the AAAI Conference on Artificial Intelligence. New York: AAAI, 2020: 12549-12556.
[8] [8] GUO D Y, WANG J, CUI Y, et al. SiamCAR: Siamese fully convolutional classification and regression for visual tracking[C]//IEEE/CVF Conference on Computer Vision and Pattern Recognition. [S. l. ]: IEEE, 2020: 6269-6277.
[9] [9] ZHANG Z P, PENG H W, FU J L, et al. Ocean: object-aware anchor-free tracking[C]//Computer Vision-European Conference on Computer Vision. Cham: Springer, 2020: 771-787.
[10] [10] BAO J H, YAN M L, YANG Y R, et al. SiamFFN: Siamese feature fusion network for visual tracking[J]. Electronics, 2023, 12(7): 1568.
[11] [11] LIU J, WANG H, MA C, et al. SiamDMU: Siamese dual mask update network for visual object tracking[J]. IEEE Transactions on Emerging Topics in Computational Intelligence, 2024, 8(2): 1656-1669.
[12] [12] HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]//IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 7132-7141.
[13] [13] WANG Q L, WU B G, ZHU P F, et al. ECA-Net: efficient channel attention for deep convolutional neural networks[C]//IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2020: 11531-11539.
[14] [14] ZHANG Q-L, YANG Y-B. SA-Net: shuffle attention for deep convolutional neural networks[C]//IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). Toronto: IEEE, 2021: 2235-2239.
[15] [15] CHEN X, YAN B, ZHU J W, et al. Transformer tracking[C]//IEEE/CVF Conference on Computer Vision and Pattern Recognition. Nashville: IEEE, 2021: 8122-8131.
[16] [16] WANG N, ZHOU W G, WANG J, et al. Transformer meets tracker: exploiting temporal context for robust visual tracking[C]//IEEE/CVF Conference on Computer Vision and Pattern Recognition. Nashville: IEEE, 2021: 1571-1580.
[17] [17] HU F, CHEN A Z, WANG Z Y, et al. Lightweight attentional feature fusion: a new baseline for text-to-video retrieval[C]//European Conference on Computer Vision. Cham: Springer, 2022: 444-461.
Get Citation
Copy Citation Text
FU Qiang, YIN Qichen, JI Yuanfa, REN Fenghua. An Object Tracking Algorithm with 3D Attention and Pyramid Decoder[J]. Electronics Optics & Control, 2025, 32(8): 18
Category:
Received: Jul. 8, 2024
Accepted: Sep. 5, 2025
Published Online: Sep. 5, 2025
The Author Email: