Laser & Optoelectronics Progress, Volume. 56, Issue 7, 070001(2019)

Potential Applications of Photoacoustic Imaging in Early Cancer Diagnosis and Treatment

Huaqin Wu, Haoyu Wang, Wenming Xie, Zhifang Li, Shulian Wu, and Hui Li*
Author Affiliations
  • Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of Education, Key Laboratory of Photonic Technology of Fujian Province, College of Photonic and Electronic Engineering, Fujian Normal University, Fuzhou, Fujian 350007, China
  • show less
    References(124)

    [1] Stewart B, Wild C P. World cancer report 2014[R]. Geneva: World Health Organization(2015).

    [2] Siegel R L, Miller K D, Jemal A. Cancer statistics, 2017[J]. CA: A Cancer Journal for Clinicians, 67, 7-30(2017).

    [11] Xu M H, Wang L V. Photoacoustic imaging in biomedicine[J]. Review of Scientific Instruments, 77, 041101(2006).

    [22] Gottschalk S. FelixFehm T, LuísDeán-Ben X, et al. Noninvasive real-time visualization of multiple cerebral hemodynamic parameters in whole mouse brains using five-dimensional optoacoustic tomography[J]. Journal of Cerebral Blood Flow & Metabolism, 35, 531-535(2015).

    [37] Andreev V G, Karabutov A A, Solomatin S V et al. Optoacoustic tomography of breast cancer with arc-array transducer[J]. Proceedings of SPIE, 3916, 36-48(2000).

    [38] Meiburger M, Nam Y, Chung E et al. Skeletonization algorithm-based blood vessel quantification using in vivo 3D photoacoustic imaging[J]. Physics in Medicine and Biology, 61, 7994-8009(2016).

    [39] Ding T, Ren K, Vallélian S. A one-step reconstruction algorithm for quantitative photoacoustic imaging[J]. Inverse Problems, 31, 095005(2015).

    [40] Hoelen C G A. A new theoretical approach to photoacoustic signal generation[J]. The Journal of the Acoustical Society of America, 106, 695-706(1999).

    [41] Shao H M[M]. Mathematical physical method(2010).

    [42] Liang K M[M]. Mathematical physical method(2010).

    [43] Kolkman R G M, Hondebrink E et al. . Photoacoustic determination of blood vessel diameter[J]. Physics in Medicine and Biology, 49, 4745-4756(2004).

    [44] Paltauf G, Schmidt-Kloiber H, Frenz M. Photoacoustic waves excited in liquids by fiber-transmitted laser pulses[J]. The Journal of the Acoustical Society of America, 104, 890-897(1998).

    [45] Paltauf G, Schmidt-Kloiber H. Pulsed optoacoustic characterization of layered media[J]. Journal of Applied Physics, 88, 1624-1631(2000).

    [46] Wang L V, Yao J J. A practical guide to photoacoustic tomography in the life sciences[J]. Nature Methods, 13, 627-638(2016).

    [47] Hu S, Maslov K, Wang L V. Second-generation optical-resolution photoacoustic microscopy with improved sensitivity and speed[J]. Optics Letters, 36, 1134-1136(2011).

    [48] Vienneau E, Liu W, Yao J J. Dual-view acoustic-resolution photoacoustic microscopy with enhanced resolution isotropy[J]. Optics Letters, 43, 4413-4416(2018).

    [49] Leng X D, Chapman W, Rao B. et al. Feasibility of co-registered ultrasound and acoustic-resolution photoacoustic imaging of human colorectal cancer[J]. Biomedical Optics Express, 9, 5159-5172(2018).

    [50] Yuan Y, Yang S H, Xing D. Preclinical photoacoustic imaging endoscope based on acousto-optic coaxial system using ring transducer array[J]. Optics Letters, 35, 2266-2268(2010).

    [51] Wu H Q, Li Z R, Liu L T et al. Photoacoustic imaging of early gastric cancer diagnosis based on long focal area ultrasound transducer[J]. Journal of Physics: Conference Series, 844, 012051(2017).

    [52] Peng D Q, Xie W M, Wu S L et al. Phantom experimental photoacoustic scanning imaging of prostate based on internal light irradiation using cylindrical diffusing source[J]. Acta Physica Sinica, 64, 207801(2015).

    [53] Fakhrejahani E, Torii M, Kitai T et al. Clinical report on the first prototype of a photoacoustic tomography system with dual illumination for breast cancer imaging[J]. PLoS One, 10, e0139113(2015).

    [54] Tian C, Qian W, Shao X et al. Photoacoustic imaging: plasmonic nanoparticles with quantitatively controlled bioconjugation for photoacoustic imaging of live cancer cells[J]. Advanced Science, 3, 1600237(2016).

    [55] Priya M. Rao B S S, Chandra S, et al. Photoacoustic spectroscopy based investigatory approach to discriminate breast cancer from normal: a pilot study[J]. Proceedings of SPIE, 9689, 968943(2016).

    [56] Chen Y S, Yeager D, Emelianov S Y. Photoacoustic imaging for cancer diagnosis and therapy guidance[M]. Amsterdam: Elsevier, 139-158(2014).

    [57] Valluru K S, Willmann J K. Clinical photoacoustic imaging of cancer[J]. Ultrasonography, 35, 267-280(2016).

    [58] Lin L, Hu P, Shi J H et al. Clinical photoacoustic computed tomography of the human breast in vivo within a single breath hold[J]. Proceedings of SPIE, 10494, 104942X(2018).

    [59] Triratanachat S, Niruthisard S, Trivijitsilp P et al. Angiogenesis in cervical intraepithelial neoplasia and early-staged uterine cervical squamous cell carcinoma: clinical significance[J]. International Journal of Gynecological Cancer, 16, 575-580(2006).

    [60] Toi M, Asao Y. MatsumotoY, et al. Visualization of tumor-related blood vessels in human breast by photoacoustic imaging system with a hemispherical detector array[J]. Scientific Reports, 7, 41970(2017).

    [61] Bohndiek S E, Sasportas L S. MacHtaler S, et al. Photoacoustic tomography detects early vessel regression and normalization during ovarian tumor response to the antiangiogenic therapy trebananib[J]. Journal of Nuclear Medicine, 56, 1942-1947(2015).

    [62] Breathnach A, Concannon E, Dorairaj J J et al. Preoperative measurement of cutaneous melanoma and nevi thickness with photoacoustic imaging[J]. Journal of Medical Imaging, 5, 015004(2018).

    [63] Breathnach A, Concannon L, Aalto L et al. Assessment of cutaneous melanoma and pigmented skin lesions with photoacoustic imaging[J]. Proceedings of SPIE, 9303, 930303(2015).

    [64] Lavaud J, Henry M, Coll J L et al. Exploration of melanoma metastases in mice brains using endogenous contrast photoacoustic imaging[J]. International Journal of Pharmaceutics, 532, 704-709(2017).

    [65] Zimmermann A[M]. Nucleus, nuclear structure, and nuclear functions: pathogenesis of nuclear abnormalities in cancer, 3071-3087(2016).

    [66] Singh N, Gilks C B. The changing landscape of gynaecological cancer diagnosis: implications for histopathological practice in the 21st century[J]. Histopathology, 70, 56-69(2017).

    [67] Partin A W, Kattan M W. Subong E N P, et al. Combination of prostate-specific antigen, clinical stage, and gleason score to predict pathological stage of localized prostate cancer[J]. JAMA, 277, 1445-1451(1997).

    [68] Attia A B E, Ho C J H, Chandrasekharan P et al. . Multispectral optoacoustic and MRI coregistration for molecular imaging of orthotopic model of human glioblastoma[J]. Journal of Biophotonics, 9, 701-708(2016).

    [69] Stantz K M, Cao M S, Liu B et al. Molecular imaging of neutropilin-1 receptor using photoacoustic spectroscopy in breast tumors[J]. Proceedings of SPIE, 7564, 75641O(2010).

    [70] Weber J, Beard P C, Bohndiek S E. Contrast agents for molecular photoacoustic imaging[J]. Nature Methods, 13, 639-650(2016).

    [71] Liu C, Li S Y, Gu Y J et al. Multispectral photoacoustic imaging of tumor protease activity with a gold nanocage-based activatable probe[J]. Molecular Imaging and Biology, 20, 919-929(2018).

    [72] Li W W, Chen X Y. Gold nanoparticles for photoacoustic imaging[J]. Nanomedicine, 10, 299-320(2015).

    [73] Balasundaram G. Ho C J H, Li K, et al. Molecular photoacoustic imaging of breast cancer using an actively targeted conjugated polymer[J]. International Journal of Nanomedicine, 10, 387(2015).

    [74] Wilson K E, Valluru K S, Willmann J K[M]. Nanoparticles for photoacoustic imaging of cancer, 315-335(2016).

    [75] Sajid M I, Jamshaid U, Jamshaid T et al. Carbon nanotubes from synthesis to in vivo biomedical applications[J]. International Journal of Pharmaceutics, 501, 278-299(2016).

    [76] Kumar S, Rani R, Dilbaghi N et al. Carbon nanotubes: a novel material for multifaceted applications in human healthcare[J]. Chemical Society Reviews, 46, 158-196(2017).

    [77] Vaupel P, Mayer A. The clinical importance of assessing tumor hypoxia: relationship of tumor hypoxia to prognosis and therapeutic opportunities[J]. Antioxidants & Redox Signaling, 22, 878-880(2015).

    [78] Zhang L Y. Identification and characterization of tumor suppressor gene and cancer stemness gene in esophageal squamous cell carcinoma[D]. Hong Kong: The University of Hong Kong Libraries(2015).

    [79] Zhang M, Liu C M, Zhang Z H et al. A new flavonoid regulates angiogenesis and reactive oxygen species production[M]. New York: Springer, 149-155(2014).

    [80] Dovlo E, Lashkari B, Sean Choi S et al. Quantitative phase-filtered wavelength-modulated differential photoacoustic radar tumor hypoxia imaging toward early cancer detection[J]. Journal of Biophotonics, 10, 1134-1142(2017).

    [81] Lin R, Chen J, Wang H. et al. Longitudinal label-free optical-resolution photoacoustic microscopy of tumor angiogenesis in vivo[J]. Quantitative Imaging in Medicine and Surgery, 5, 23(2015).

    [82] Gerling M, Zhao Y, Nania S et al. Real-time assessment of tissue hypoxia in vivo with combined photoacoustics and high-frequency ultrasound[J]. Theranostics, 4, 604-613(2014).

    [83] Paproski R J, Heinmiller A, Wachowicz K et al. Multi-wavelength photoacoustic imaging of inducible tyrosinase reporter gene expression in xenograft tumors[J]. Scientific Reports, 4, 5329(2015).

    [84] Naser M A, Munoz N. Sampaio D R T, et al. Imaging biomarker development based on microbubble perfusion and oxygen saturation in a rat model of liver cancer[J]. Proceedings of SPIE, 10580, 1058007(2018).

    [85] Wood C, Harutyunyan K. Cerda J D L, et al. Assessment of blood oxygen saturation using spectroscopic photoacoustic imaging as a biomarker for disease progression in a small-animal leukemia model[J]. Proceedings of SPIE, 10580, 105800W(2018).

    [86] Gray L H, Steadman J M. Determination of theoxyhaemoglobin dissociation curves for mouse and rat blood[J]. The Journal of Physiology, 175, 161-171(1964).

    [87] Siphanto R I, Thumma K K. Kolkman R G M, et al. Serial noninvasive photoacoustic imaging of neovascularization in tumor angiogenesis[J]. Optics Express, 13, 89-95(2005).

    [88] Wang S, Larin K V. Optical coherence elastography for tissue characterization: a review[J]. Journal of Biophotonics, 8, 279-302(2015).

    [89] Wang J H. Preliminary study on laser speckle tissue elastography[D]. Wuhan: Huazhong University of Science and Technology(2014).

    [90] Glatz T, Scherzer O, Widlak T. Texture generation for photoacoustic elastography[J]. Journal of Mathematical Imaging and Vision, 52, 369-384(2015).

    [91] Zhao Y, Yang S H, Chen C G et al. Simultaneous optical absorption and viscoelasticity imaging based on photoacoustic lock-in measurement[J]. Optics Letters, 39, 2565-2568(2014).

    [92] Jin D Y, Yang F, Chen Z J et al. Biomechanical and morphological multi-parameter photoacoustic endoscope for identification of early esophageal disease[J]. Applied Physics Letters, 111, 103703(2017).

    [93] Mallidi S, Luke G P, Emelianov S. Photoacoustic imaging in cancer detection, diagnosis, and treatment guidance[J]. Trends in Biotechnology, 29, 213-221(2011).

    [94] Biswas D, Gorey A. Chen G C K, et al. Investigation of diseases through red blood cells' shape using photoacoustic response technique[J]. Proceedings of SPIE, 9322, 93220K(2015).

    [95] Saha R K, Fadhel M N, Lawrence A et al. Rapid computation of photoacoustic fields from normal and pathological red blood cells using a Green's function method[J]. Proceedings of SPIE, 10064, 100644U(2017).

    [96] Rabiner L R, Gold B. Theory and application of digital signal processing[J]. Englewood Cliffs, NJ, Prentice-Hall, Inc., 777(1975).

    [97] Cheong C, Joseph P, Lee S. High frequency formulation for the acoustic power spectrum due to cascade-turbulence interaction[J]. The Journal of the Acoustical Society of America, 119, 108-122(2006).

    [98] Sinha S, Rao N A, Chinni B K et al. Evaluation of frequency domain analysis of a multiwavelength photoacoustic signal for differentiating malignant from benign and normal prostates[J]. Journal of Ultrasound in Medicine, 35, 2165-2177(2016).

    [99] Nandy S, Mostafa A, Hagemann I S. et al. Evaluation of ovarian cancer: initial application of coregistered photoacoustic tomography and US[J]. Radiology, 289, 740-747(2018).

    [100] Kumon R E, Deng C X, Wang X D. Frequency-domain analysis of photoacoustic imaging data from prostate adenocarcinoma tumors in a murine model[J]. Ultrasound in Medicine & Biology, 37, 834-839(2011).

    [101] Wang S H, Tao C, Yang Y Q et al. Theoretical and experimental study of spectral characteristics of the photoacoustic signal from stochastically distributed particles[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 62, 1245-1255(2015).

    [102] Lin L, Hu P, Shi J H et al. Single-breath-hold photoacoustic computed tomography of the breast[J]. Nature Communications, 9, 2352(2018).

    [103] Neuschler E I, Butler R, Young C A et al. A pivotal study of optoacoustic imaging to diagnose benign and malignant breast masses: a new evaluation tool for radiologists[J]. Radiology, 287, 398-412(2018).

    [104] Menezes G L G, Pijnappel R M, Meeuwis C et al. . Downgrading of breast masses suspicious for cancer by using optoacoustic breast imaging[J]. Radiology, 288, 355-365(2018).

    [105] Garcia-Uribe A, Erpelding T N, Krumholz A et al. Dual-modality photoacoustic and ultrasound imaging system for noninvasive sentinel lymph node detection in patients with breast cancer[J]. Scientific Reports, 5, 15748(2015).

    [106] Li M C, Liu C B, Gong X J et al. Linear array-based real-time photoacoustic imaging system with a compact coaxial excitation handheld probe for noninvasive sentinel lymph node mapping[J]. Biomedical Optics Express, 9, 1408-1422(2018).

    [107] Daeichin V, Chen C, Ding Q et al. A broadband polyvinylidene difluoride-based hydrophone with integrated readout circuit for intravascular photoacoustic imaging[J]. Ultrasound in Medicine & Biology, 42, 1239-1243(2016).

    [108] Li Z F, Li H, Chen H Y et al. In vivo determination of acute myocardial ischemia based on photoacoustic imaging with a focused transducer[J]. Journal of Biomedical Optics, 16, 076011(2011).

    [109] Piao Z L, Ma T, Qu Y Q et al. High speed intravascular photoacoustic imaging of atherosclerotic arteries[J]. Proceedings of SPIE, 9689, 968930(2016).

    [110] Kneipp M, Turner J, Hambauer S et al. Functional real-time optoacoustic imaging of middle cerebral artery occlusion in mice[J]. PLoS One, 9, e96118(2014).

    [111] Tang J, Coleman J, Dai X. et al. 3D photoacoustic tomography brain imaging in behaving animal. [C]∥Optical Tomography and Spectroscopy Optical Society of America, OM2C, 3(2016).

    [112] Zhang Q Z, Liu Z, Carney P R et al. Non-invasive imaging of epileptic seizures in vivo using photoacoustic tomography[J]. Physics in Medicine and Biology, 53, 1921-1931(2008).

    [113] Xie Z X, Roberts W, Carson P et al. Evaluation of bladder microvasculature with high-resolution photoacoustic imaging[J]. Optics Letters, 36, 4815-4817(2011).

    [114] Kim C, Jeon M, Wang L V. Nonionizing photoacoustic cystography in vivo[J]. Optics Letters, 36, 3599-3601(2011).

    [115] Mallidi S, Watanabe K, Timerman D et al. Prediction of tumor recurrence and therapy monitoring using ultrasound-guided photoacoustic imaging[J]. Theranostics, 5, 289-301(2015).

    [116] Ho C J H, Balasundaram G, Driessen W et al. Photoacoustic diagnostic imaging of photodynamic therapeutic contrast agents. [C]∥Biomedical Optics, BS4A, 5(2014).

    [117] Li Z F, Liu Y B, Li H et al. Monitoring tissue temperature for photothermal cancer therapy based on photoacoustic imaging: a pilot study[J]. Proceedings of SPIE, 8582, 858209(2013).

    [118] Li Z F, Chen H Y, Zhou F F et al. Interstitial photoacoustic sensor for the measurement of tissue temperature during interstitial laser phototherapy[J]. Sensors, 15, 5583-5593(2015).

    [119] Stoffels I, Morscher S, Helfrich I et al. Metastatic status of sentinel lymph nodes in melanoma determined noninvasively with multispectral optoacoustic imaging[J]. Science Translational Medicine, 7, 199(2015).

    [120] Langhout G C, Grootendorst D J, Nieweg O E et al. Detection of melanoma metastases in resected human lymph nodes by noninvasive multispectral photoacoustic imaging[J]. International Journal of Biomedical Imaging, 2014, 163652(2014).

    [121] Neuschmelting V, Lockau H, Ntziachristos V et al. Lymph node micrometastases and in-transit metastases from melanoma: in vivo detection with multispectral optoacoustic imaging in a mouse model[J]. Radiology, 280, 137-150(2016).

    [122] Guan T P, Fang C H. Photoacoustic imaging technique and its application in the demarcation of primary liver cancer[J]. Chinese Journal of Hepatic Surgery, 5, 65-67(2016).

    [123] Aguirre A, Guo P Y, Gamelin J et al. Coregistered three-dimensional ultrasound and photoacoustic imaging system for ovarian tissue characterization[J]. Journal of Biomedical Optics, 14, 054014(2009).

    [124] Xing D, Wang Y T, Xu D et al. -11-19(2014).

    [125] Zackrisson S, Gambhir S S. Light in and sound out: emerging translational strategies for photoacoustic imaging[J]. Cancer Research, 74, 979-1004(2014).

    Tools

    Get Citation

    Copy Citation Text

    Huaqin Wu, Haoyu Wang, Wenming Xie, Zhifang Li, Shulian Wu, Hui Li. Potential Applications of Photoacoustic Imaging in Early Cancer Diagnosis and Treatment[J]. Laser & Optoelectronics Progress, 2019, 56(7): 070001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Reviews

    Received: Sep. 5, 2018

    Accepted: Oct. 22, 2018

    Published Online: Jul. 30, 2019

    The Author Email: Hui Li (hli@fjnu.edu.cn)

    DOI:10.3788/LOP56.070001

    Topics