Photonics Insights, Volume. 3, Issue 3, R06(2024)
Image reconstruction from photoacoustic projections Story Video
[1] A. G. Bell. On the production and reproduction of sound by light. Am. J. Sci., s3-20, 305(1880).
[14] T. Bowen. Radiation-induced thermoacoustic soft tissue imaging, 817(1981).
[15] T. Bowen et al. Some experimental results on the thermoacoustic imaging of tissue equivalent phantom materials, 823(1981).
[16] T. Bowen. Radiation-induced thermoacoustic imaging. U.S. patent(1981).
[17] A. A. Oraevsky, S. L. Jacques, F. K. Tittel. Determination of tissue optical properties by piezoelectric detection of laser-induced stress waves, 86(1993).
[18] A. A. Oraevsky et al. Laser-based optoacoustic imaging in biological tissues, 122(1994).
[19] A. A. Oraevsky et al. Lateral and z-axial resolution in laser optoacoustic imaging with ultrasonic transducers, 198(1995).
[26] C. G. A. Hoelen et al. Photoacoustic blood cell detection and imaging of blood vessels in phantom tissue, 142(1998).
[74] L. V. Wang, H. Wu. Biomedical Optics: Principles and Imaging(2007).
[76] American National. American National Standard for Safe Use of Lasers ANSI Z136.1-2007(2007).
[78] B. Cox, P. C. Beard. Modeling photoacoustic propagation in tissue using k-space techniques. Photoacoustic Imaging and Spectroscopy, 25(2017).
[79] H. Jiang. Fundamentals of photoacoustic tomography. Photoacoustic Tomography, 1(2015).
[81] C. Guo, C. S. Singh. Handbook of Laser Technology and Applications: Laser Applications: Medical, Metrology and Communication (volume four)(2021).
[89] S. R. Deans. The Radon Transform and Some of its Applications(2007).
[90] A. C. Kak, M. Slaney. Algorithms for reconstruction with nondiffracting sources. Principles of Computerized Tomographic Imaging, 49(2001).
[91] N. J. Redding, G. N. Newsam. Radon transform and its inverse. Inverting the Circular Radon Transform, 2(2002).
[92] N. J. Redding, T. M. Payne. Inverting the spherical Radon transform for 3D SAR image formation, 466(2003).
[93] K. E. Thomenius. Evolution of ultrasound beamformers, 1615(1996).
[95] R. E. McKeighen, M. P. Buchin. New techniques for dynamically variable electronic delays for real time ultrasonic imaging, 250(1977).
[101] A. Alshaya et al. Spatial resolution and contrast enhancement in photoacoustic imaging with filter delay multiply and sum beamforming technique, 1(2016).
[108] M. T. Graham, M. A. L. Bell. Theoretical application of short-lag spatial coherence to photoacoustic imaging, 1(2017).
[112] J. Mann, W. Walker. A constrained adaptive beamformer for medical ultrasound: Initial results, 1807(2002).
[113] M. Sasso, C. Cohen-Bacrie. Medical ultrasound imaging using the fully adaptive beamformer, ii/489(2005).
[120] R. Al Mukaddim, R. Ahmed, T. Varghese. Improving minimum variance beamforming with sub-aperture processing for photoacoustic imaging, 2879(2021).
[123] K. W. Hollman, K. Rigby, M. O’donnell. Coherence factor of speckle from a multi-row probe, 1257(1999).
[162] D. L. Colton, R. Kress, R. Kress. Inverse Acoustic and Electromagnetic Scattering Theory, 93(1998).
[169] G. Zangerl, O. Scherzer, M. Haltmeier. Exact series reconstruction in photoacoustic tomography with circular integrating detectors. Commun. Math. Sci., 7, 665(2008).
[179] K. Wang et al. Investigation of iterative image reconstruction in optoacoustic tomography, 379(2012).
[184] G. B. Arfken, H. J. Weber, F. E. Harris. Mathematical Methods for Physicists: a Comprehensive Guide(2011).
[191] P. C. Hansen. The L-curve and its use in the numerical treatment of inverse problems. Computational Inverse Problems in Electrocardiology, 119(2001).
[193] L. Bottou. Large-scale machine learning with stochastic gradient descent, 177(2010).
[194] L. Bottou. Stochastic gradient descent tricks. Neural Networks: Tricks of the Trade, 421(2012).
[214] S. S. Nisha, N. Meeral. Applications of deep learning in biomedical engineering. Handbook of Deep Learning in Biomedical Engineering Techniques and Applications, 245(2020).
[222] J. Zhang et al. PAFormer: photoacoustic reconstruction via transformer with mask mechanism (IUS), 1(2022).
[226] J. Zhang et al. Limited-view photoacoustic imaging reconstruction with dual domain inputs under mutual information constraint(2020).
[227] S. Guan et al. Dense dilated UNet: deep learning for 3D photoacoustic tomography image reconstruction(2021).
[235] V. Shijo et al. SwinIR for photoacoustic computed tomography artifact reduction, 1(2023).
[240] C. Yang, F. Gao. EDA-Net: dense aggregation of deep and shallow information achieves quantitative photoacoustic blood oxygenation imaging deep in human breast, 246(2019).
[241] C. Yang et al. Quantitative photoacoustic blood oxygenation imaging using deep residual and recurrent neural network, 741(2019).
[253] H. Lan et al. Ki-GAN: knowledge infusion generative adversarial network for photoacoustic image reconstruction in vivo, 273(2019).
[257] W. Li et al. Deep learning reconstruction algorithm based on sparse photoacoustic tomography system, 1(2021).
[260] S. Antholzer et al. NETT regularization for compressed sensing photoacoustic tomography, 272(2019).
[261] C. Yang, H. Lan, F. Gao. Accelerated photoacoustic tomography reconstruction via recurrent inference machines, 6371(2019).
[266] J. Ho, A. Jain, P. Abbeel. Denoising diffusion probabilistic models. Adv. Neural Inf. Process. Syst., 33, 6840(2020).
[267] Z. Luo et al. Image restoration with mean-reverting stochastic differential equations(2023).
[269] S. Tong et al. Score-based generative models for photoacoustic image reconstruction with rotation consistency constraints(2023).
[270] S. Dey et al. Score-based diffusion models for photoacoustic tomography image reconstruction, 2470(2024).
[272] D. Waibel et al. Reconstruction of initial pressure from limited view photoacoustic images using deep learning, 196(2018).
[273] H. Lan et al. Reconstruct the photoacoustic image based on deep learning with multi-frequency ring-shape transducer array, 7115(2019).
[276] K. Shen et al. Physics-driven deep learning photoacoustic tomography. Fundam. Res.(2024).
[281] C. Dehner et al. DeepMB: deep neural network for real-time model-based optoacoustic image reconstruction with adjustable speed of sound(2022).
[282] C. Dehner et al. Deep model-based optoacoustic image reconstruction (DeepMB), 66(2024).
[287] V. G. Andreev et al. Detection of optoacoustic transients with a rectangular transducer of finite dimensions, 153(2002).
[288] S. A. Ermilov et al. Development of laser optoacoustic and ultrasonic imaging system for breast cancer utilizing handheld array probes, 28(2009).
[310] J. Wei, K. Shen, C. Tian. Comparisons of filtered back-projection and time reversal algorithms in photoacoustic tomography, 68(2023).
[311] S. Liu et al. Ultrafast Filtered Back-Projection for Photoacoustic Computed Tomography(2024).
Get Citation
Copy Citation Text
Chao Tian, Kang Shen, Wende Dong, Fei Gao, Kun Wang, Jiao Li, Songde Liu, Ting Feng, Chengbo Liu, Changhui Li, Meng Yang, Sheng Wang, Jie Tian, "Image reconstruction from photoacoustic projections," Photon. Insights 3, R06 (2024)
Category: Review Articles
Received: Jul. 8, 2024
Accepted: Aug. 28, 2024
Published Online: Sep. 29, 2024
The Author Email: Yang Meng (yangmeng_pumch@126.com), Wang Sheng (iamsheng2020@ustc.edu.cn), Tian Jie (tian@ieee.org)
CSTR:32396.14.PI.2024.R06