Laser & Optoelectronics Progress, Volume. 55, Issue 1, 13001(2018)

Inversion of Soil Moisture Content Based on Hyperspectral Multi-Scale Decomposition

Cai Lianghong1,2 and Ding Jianli1,2、*
Author Affiliations
  • 1Xinjiang Common University Key Laboratory of Smart City and Environmental Stimulation, College of Resource and Environment Sciences, Xinjiang University, Urumqi, Xinjiang 830046, China
  • 2Key Laboratory of Oasis Ecology, Ministry of Education, Xinjiang University, Urumqi, Xinjiang 830046, China
  • show less
    Figures & Tables(8)
    Distribution of field samping points
    Reconstruction spectra of original spectrum at 1-8 wavelet levels
    Comparison between measured and predicted SMC values
    • Table 1. Statistical characteristics of SMC in soil samples

      View table

      Table 1. Statistical characteristics of SMC in soil samples

      SamplesetNumber ofsamplesMeanvalueStandarddeviationMaximumvalueMinimumvalueCV
      Whole set390.1470.0570.3390.0150.388
      Calibration set270.1460.0500.2110.0200.342
      Validation set120.1480.0840.3390.0150.568
    • Table 2. Correlation analysis between SMC and characteristic spectrum in each level

      View table

      Table 2. Correlation analysis between SMC and characteristic spectrum in each level

      WaveletlevelNumber ofsensitive bandMaximum positive correlationMaximum negative correlation
      Band /nmCorrelationcoefficientBand /nmCorrelationcoefficient
      L13938520.6102350-0.714
      L24028540.5612351-0.620
      L34298600.6182364-0.690
      L44868530.6192363-0.675
      L55058490.5852341-0.648
      L66028580.5572351-0.573
      L72785240.4581985-0.486
      L82544380.3821827-0.431
    • Table 3. Maximum correlation between SMC and different mathematical transformation of characteristic spectrum of each level and position of band

      View table

      Table 3. Maximum correlation between SMC and different mathematical transformation of characteristic spectrum of each level and position of band

      WaveletlevelVariableRlg R1/Rlg(1/R)1/(lg R)R'(lg R)'(1/R)'[lg(1/R)]'(1/lg R)'
      L0Band /nm22292244219022432165407409407407831
      r-0.7240.7290.584-0.729-0.667-0.728-0.757-0.685-0.7390.685
      L1Band /nm2244224422862194218640711994074071199
      r-0.7230.7280.784-0.728-0.667-0.780-0.7620.792-0.792-0.662
      L2Band /nm19242242218622422171488768215514172147
      r-0.5480.7280.583-0.728-0.667-0.686-0.735-0.726-0.699-0.582
      L3Band /nm1962214721822134216119511760217421601860
      r-0.5600.7620.621-0.762-0.707-0.6690.758-0.760-0.682-0.624
      L4Band /nm2196219121842191210421571761217718771761
      r-0.7230.7280.582-0.728-0.666-0.6800.761-0.7570.757-0.602
      L5Band /nm2197219721922109219719531874217221721773
      r-0.7240.7290.583-0.729-0.668-0.7250.758-0.7460.746-0.597
      L6Band /nm2144213622012140210714411780226222621780
      r-0.7220.7280.582-0.728-0.665-0.6760.753-0.7430.743-0.560
    • Table 4. Gray relational analysis of different mathematical transformation of characteristic spectrum of each level

      View table

      Table 4. Gray relational analysis of different mathematical transformation of characteristic spectrum of each level

      WaveletlevelItemRlg R1/RLg (1/R)1/lg RR'(lg R)'(1/R)'[lg(1/R)]'(1/lg R)'
      L0GCD0.7000.7470.8190.7500.7860.8060.8510.8390.7750.815
      Order10938651274
      L1GCD0.8050.8580.8980.8000.7990.8700.8870.9550.8900.881
      Order97281064135
      L2GCD0.7530.7960.8240.7720.8080.8680.8810.8700.8310.867
      Order98610731254
      L3GCD0.7590.8190.8230.7550.8650.8210.9160.8420.8330.887
      Order98610371452
      L4GCD0.7880.8000.8620.8750.8090.8840.8950.8930.8920.842
      Order10965841237
      L5GCD0.7450.8310.8270.8030.8060.8180.8810.8350.8730.867
      Order10569871423
      L6GCD0.7700.8280.8700.7790.7870.8150.9030.8890.8560.816
      Order10539861247
    • Table 5. Estimation results of SMC

      View table

      Table 5. Estimation results of SMC

      Variable selectionmethodNumber ofvariableCalibration setValidation set
      R2ceRMSECRp2eRMSEPeRPD
      L0100.7500.0240.9260.0451.867
      L1100.7690.0230.9120.0422.000
      L2100.6920.0270.8900.0352.400
      L3100.7480.0240.8840.0332.545
      L4100.6700.0530.8750.0342.471
      L5100.6750.0280.8720.0491.714
      L6100.6720.0280.9110.0322.625
      L-GRA120.7100.0260.9650.0302.800
    Tools

    Get Citation

    Copy Citation Text

    Cai Lianghong, Ding Jianli. Inversion of Soil Moisture Content Based on Hyperspectral Multi-Scale Decomposition[J]. Laser & Optoelectronics Progress, 2018, 55(1): 13001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Spectroscopy

    Received: Jul. 18, 2017

    Accepted: --

    Published Online: Sep. 10, 2018

    The Author Email: Ding Jianli (2187736938@qq.com)

    DOI:10.3788/LOP55.013001

    Topics