The Journal of Light Scattering, Volume. 36, Issue 3, 330(2024)

Integrated Nanopore Electrochemistry-Raman Spectroscopy for Single-Molecule Sensing

XIE Baokang1, LIU Shaochuang1、*, YING Yilun1,2, and LONG Yitao1
Author Affiliations
  • 1Molecular Sensing andImaging Center, School of Chemistry and Chemical Engineering, Nanjing University, Jiangsu Nanjing 210023
  • 2Chemistry and Biomedicine Innovation Center, Jiangsu Nanjing University, Nanjing 210023
  • show less
    References(76)

    [3] [3] Ying Y L, Cao C, Long Y T. Single molecule analysis by biological nanopore sensors[J]. Analyst, 2014, 139(16): 3826-3835.

    [4] [4] Zhang X, Zhang D, Zhao C, et al. Nanopore electric snapshots of an RNA tertiary folding pathway[J]. Nature Communications, 2017, 8(1): 1458.

    [5] [5] Clarke J, Wu H C, Jayasinghe L, et al. Continuous base identification for single-molecule nanopore DNA sequencing[J]. Nature Nanotechnology, 2009, 4(4): 265-270.

    [6] [6] Cao C, Ying Y L, Hu Z L, et al. Discrimination of oligonucleotides of different lengths with a wild-type aerolysin nanopore[J]. Nature Nanotechnology, 2016, 11(8): 713-718.

    [7] [7] Ying Y L, Hu Z L, Zhang S, et al. Nanopore-based technologies beyond DNA sequencing[J]. Nature Nanotechnology, 2022, 17(11): 1136-1146.

    [8] [8] Harrington L, Alexander L T, Knapp S, et al. Single-molecule protein phosphorylation and dephosphorylation by nanopore enzymology[J]. ACS Nano, 2018, 13(1): 633-641.

    [9] [9] Li S, Wu X Y, Li M Y, et al. T232K/K238Q aerolysin nanopore for mapping adjacent phosphorylation sites of a single tau peptide[J]. Small Methods, 2020, 4(11): 2000014.

    [10] [10] Li Z Q, Wu Z Q, Xia X H. Recent Advances in Nanofluidic Electrochemistry for Biochemical Analysis[J]. Journal of Electrochemistry, 2019, 25(3): 291-301.

    [11] [11] Jiang J, Li M Y, Wu X Y, et al. Protein nanopore reveals the renin-angiotensin system crosstalk with single-amino-acid resolution[J]. Nature Chemistry, 2023, 15(4): 578-586.

    [12] [12] Liu W, Yang C N, Yang Z L, et al. Observing Confined Local Oxygen-induced Reversible Thiol/Disulfide Cycle with a Protein Nanopore[J]. Angewandte Chemie International Edition, 2023, 135(27): e202304023.

    [13] [13] Niu H, Li M Y, Ying Y L, et al. An engineered third electrostatic constriction of aerolysin to manipulate heterogeneously charged peptide transport[J]. Chemical Science, 2022, 13(8): 2456-2461.

    [14] [14] Liu Y, Yao X F, Wang H Y. Protein detection through single molecule nanopore[J]. Chinese Journal of Analytical Chemistry, 2018, 46(6): e1838-e1846.

    [15] [15] Wang H, Kasianowicz J J, Robertson J W, et al. A comparison of ion channel current blockades caused by individual poly (ethylene glycol) molecules and polyoxometalate nanoclusters[J]. The European Physical Journal E, 2019, 42: 1-7.

    [16] [16] Cao C, Long Y T. Biological nanopores: confined spaces for electrochemical single-molecule analysis[J]. Accounts of Chemical Research, 2018, 51(2): 331-341.

    [17] [17] Meller A, Nivon L, Brandin E, et al. Rapid nanopore discrimination between single polynucleotide molecules[J]. Proceedings of the National Academy of Sciences, 2000, 97(3): 1079-1084.

    [18] [18] Li X, Ying Y L, Fu X X, et al. Single-molecule frequency fingerprint for ion interaction networks in a confined nanopore[J]. Angewandte Chemie International Edition, 2021, 60(46): 24582-24587.

    [19] [19] Xin K L, Hu Z L, Liu S C, et al. 3D Blockage Mapping for Identifying Familial Point Mutations in Single Amyloid-β Peptides with a Nanopore[J]. Angewandte Chemie International Edition, 2022, 61(44): e202209970.

    [20] [20] Huo M Z, Li M Y, Ying Y L, et al. Is the volume exclusion model practicable for nanopore protein sequencing[J]. Analytical Chemistry, 2021, 93(33): 11364-11369.

    [21] [21] Jain M, Fiddes I T, Miga K H, et al. Improved data analysis for the MinION nanopore sequencer[J]. Nature Methods, 2015, 12(4): 351-356.

    [22] [22] Gu Z, Ying Y L, Cao C, et al. Accurate data process for nanopore analysis[J]. Analytical Chemistry, 2015, 87(2): 907-913.

    [23] [23] Wei R, Tampé R, Rant U. Stochastic sensing of proteins with receptor-modified solid-state nanopores[J]. Biophysical Journal, 2012, 102(3): 429a.

    [24] [24] Gilboa T, Meller A. Optical sensing and analyte manipulation in solid-state nanopores[J]. Analyst, 2015, 140(14): 4733-4747.

    [25] [25] Assad O N, Gilboa T, Spitzberg J, et al. Light-enhancing plasmonic-nanopore biosensor for superior single-molecule detection[J]. Advanced Materials, 2017, 29(9): 1-9.

    [26] [26] Ivankin A, Henley R Y, Larkin J, et al. Label-free optical detection of biomolecular translocation through nanopore arrays[J]. ACS Nano, 2014, 8(10): 10774-10781.

    [27] [27] Peng H Y, Wang J Z, Liu J, et al. Investigation on Electrochemical Processes of p-Aminothiophenol on Gold Electrode of Nanostructures[J]. Journal of Electrochemistry, 2022, 28(4): 2106281.

    [28] [28] Gu Y, Hu Y F, Wang W W, et al. An In-Situ Raman Spectroscopic Study on the Interfacial Process of Carbonate-Based Electrolyte on Nanostructured Silver Electrode[J]. Journal of Electrochemistry, 2023, 29(12): 2301261.

    [29] [29] Shen Y F, Chen Y L, Wang S X, et al. Electrochemical SERS study of Benzotriazole and 3-mercapto-1-propanesulfonate in Acidic Solution on Copper Electrode[J]. Journal of Electrochemistry, 2022, 28(6): 2104451.

    [31] [31] Liu J, Zhang C, Zhang S, et al. A versatile β-cyclodextrin functionalized silver nanoparticle monolayer for capture of methyl orange from complex wastewater[J]. Chinese Chemical Letters, 2020, 31(2): 539-542.

    [32] [32] Li Y, Hu Y, Shi F, et al. C-H Arylation on Nickel Nanoparticles Monitored by In-Situ Surface-Enhanced Raman Spectroscopy[J]. Angewandte Chemie International Edition, 2019, 58(27): 9049-9053.

    [33] [33] Li L, Yang J, Wei J, et al. SERS monitoring of photoinduced-enhanced oxidative stress amplifier on Au@ carbon dots for tumor catalytic therapy[J]. Light: Science & Applications, 2022, 11(1): 286.

    [34] [34] Jin J, Song W, Wang J, et al. A highly sensitive SERS platform based on small-sized Ag/GQDs nanozyme for intracellular analysis[J]. Chemical Engineering Journal, 2022, 430: 132687.

    [35] [35] Kneipp K, Wang Y, Kneipp H, et al. Single molecule detection using surface-enhanced Raman scattering (SERS)[J]. Physical Review Letters, 1997, 78(9): 1667.

    [36] [36] Kneipp J, Kneipp H, Kneipp K. SERS—a single-molecule and nanoscale tool for bioanalytics[J]. Chemical Society Reviews, 2008, 37(5): 1052-1060.

    [38] [38] Amendola V, Pilot R, Frasconi M, et al. Surface plasmon resonance in gold nanoparticles: a review[J]. Journal of Physics: Condensed Matter, 2017, 29(20): 203002.

    [39] [39] Xue L, Yamazaki H, Ren R, et al. Solid-state nanopore sensors[J]. Nature Reviews Materials, 2020, 5(12): 931-951.

    [40] [40] Cecchini M P, Wiener A, Turek V A, et al. Rapid ultrasensitive single particle surface-enhanced Raman spectroscopy using metallic nanopores[J]. Nano Letters, 2013, 13(10): 4602-4609.

    [41] [41] Chen C, Hutchison J A, Van Dorpe P, et al. Focusing Plasmons in Nanoslits for Surface-Enhanced Raman Scattering[J]. Small, 2009, 5(24): 2876-2882.

    [42] [42] Kerman S, Chen C, Li Y, et al. Raman fingerprinting of single dielectric nanoparticles in plasmonic nanopores[J]. Nanoscale, 2015, 7(44): 18612-18618.

    [43] [43] Chen C, Li Y, Kerman S, et al. High spatial resolution nanoslit SERS for single-molecule nucleobase sensing[J]. Nature Communications, 2018, 9(1): 1733.

    [44] [44] Huang J A, Mousavi M Z, Zhao Y, et al. SERS discrimination of single DNA bases in single oligonucleotides by electro-plasmonic trapping[J]. Nature Communications, 2019, 10(1): 5321.

    [45] [45] Kim J Y, Han D, Crouch G M, et al. Capture of single silver nanoparticles in nanopore arrays detected by simultaneous amperometry and surface-enhanced raman scattering[J]. Analytical Chemistry, 2019, 91(7): 4568-4576.

    [46] [46] Hubarevich A, Huang J A, Giovannini G, et al. λ-DNA through porous materials—surface-enhanced raman scattering in a simple plasmonic nanopore[J]. The Journal of Physical Chemistry C, 2020, 124(41): 22663-22670.

    [47] [47] Iarossi M, Darvill D, Hubarevich A, et al. High-Density Plasmonic Nanopores for DNA Sensing at Ultra-Low Concentrations by Plasmon-Enhanced Raman Spectroscopy[J]. Advanced Functional Materials, 2023, 33(41): 2301934.

    [48] [48] Zhao Y, Hubarevich A, De Fazio A F, et al. Plasmonic Bowl-Shaped Nanopore for Raman Detection of Single DNA Molecules in Flow-Through[J]. Nano Letters, 2023, 23(11): 4830-4836.

    [49] [49] Belkin M, Chao S H, Jonsson M P, et al. Plasmonic nanopores for trapping, controlling displacement, and sequencing of DNA[J]. ACS Nano, 2015, 9(11): 10598-10611.

    [50] [50] Shi X, Verschueren D V, Dekker C. Active delivery of single DNA molecules into a plasmonic nanopore for label-free optical sensing[J]. Nano Letters, 2018, 18(12): 8003-8010.

    [51] [51] Shi X, Verschueren D, Pud S, et al. Integrating Sub-3 nm Plasmonic Gaps into Solid-State Nanopores[J]. Small, 2018, 14(18): 1703307.

    [52] [52] Verschueren D V, Pud S, Shi X, et al. Label-free optical detection of DNA translocations through plasmonic nanopores[J]. ACS Nano, 2018, 13(1): 61-70.

    [53] [53] Liu H L, Zhan K, Wang K, et al. Recent advances in nanotechnologies combining surface-enhanced Raman scattering and nanopore[J]. TrAC Trends in Analytical Chemistry, 2023, 159: 116939.

    [54] [54] Yang J M, Jin L, Pan Z Q, et al. Surface-enhanced Raman scattering probing the translocation of DNA and amino acid through plasmonic nanopores[J]. Analytical Chemistry, 2019, 91(9): 6275-6280.

    [55] [55] Shen Q, Zhou P L, Huang B T, et al. Mass transport through a sub-10 nm single gold nanopore: SERS and ionic current measurement[J]. Journal of Electroanalytical Chemistry, 2021, 894: 115373.

    [56] [56] Cao J, Liu H L, Yang J M, et al. SERS detection of nucleobases in single silver plasmonic nanopores[J]. ACS Sensors, 2020, 5(7): 2198-2204.

    [57] [57] Liu H, Jiang Q, Pang J, et al. A Multiparameter pH-Sensitive Nanodevice Based on Plasmonic Nanopores[J]. Advanced Functional Materials, 2018, 28(1): 1703847.

    [58] [58] Gao R, Lin Y, Ying Y L, et al. Wireless nanopore electrodes for analysis of single entities[J]. Nature Protocols, 2019, 14(7): 2015-2035.

    [59] [59] Gao R, Ying Y L, Li Y J, et al. A 30 nm nanopore electrode: facile fabrication and direct insights into the intrinsic feature of single nanoparticle collisions[J]. Angewandte Chemie International Edition, 2018, 57(4): 1011-1015.

    [60] [60] Zhou J, Zhou P L, Shen Q, et al. Probing multidimensional structural information of single molecules transporting through a sub-10 nm conical plasmonic nanopore by SERS[J]. Analytical Chemistry, 2021, 93(34): 11679-11685.

    [61] [61] Zhou J, Lan Q, Li W, et al. Single molecule protein segments sequencing by a plasmonic nanopore[J]. Nano Letters, 2023, 23(7): 2800-2807.

    [62] [62] Li W, Zhou J, Lan Q, et al. Single-Molecule Electrical and Spectroscopic Profiling Protein Allostery Using a Gold Plasmonic Nanopore[J]. Nano Letters, 2023, 23(7): 2586-2592.

    [63] [63] Liu S C, Xie B K, Zhong C B, et al. An advanced optical-electrochemical nanopore measurement system for single-molecule analysis[J]. Review of Scientific Instruments, 2021, 92(12): 121301.

    [64] [64] Sanger F, Nicklen S, Coulson A R. DNA sequencing with chain-terminating inhibitors[J]. Proceedings of the National Academy of Sciences, 1977, 74(12): 5463-5467.

    [65] [65] Shendure J, Balasubramanian S, Church G M, et al. DNA sequencing at 40: past, present and future[J]. Nature, 2017, 550(7676): 345-353.

    [66] [66] Tang L. Next-generation peptide sequencing[J]. Nature Methods, 2018, 15(12): 997-997.

    [67] [67] Varongchayakul N, Song J, Meller A, et al. Single-molecule protein sensing in a nanopore: a tutorial[J]. Chemical Society Reviews, 2018, 47(23): 8512-8524.

    [68] [68] Piguet F, Ouldali H, Pastoriza-Gallego M, et al. Identification of single amino acid differences in uniformly charged homopolymeric peptides with aerolysin nanopore[J]. Nature Communications, 2018, 9(1): 966.

    [69] [69] Kelly S M, Price N C. The use of circular dichroism in the investigation of protein structure and function[J]. Current Protein and Peptide Science, 2000, 1(4): 349-384.

    [70] [70] Cheng Y. Single-particle cryo-EM—How did it get here and where will it go[J]. Science, 2018, 361(6405): 876-880.

    [71] [71] Henderson R, Baldwin J M, Ceska T A, et al. Model for the structure of bacteriorhodopsin based on high-resolution electron cryo-microscopy[J]. Journal of Molecular Biology, 1990, 213(4): 899-929.

    [72] [72] Yang C Y, Gu Z, Hu Z L, et al. A Low Noise Temperature Control System for Nanopore-Based Single Molecule Analysis[J]. Journal of Electrochemistry, 2019, 25(3): 312-318.

    [74] [74] Cutshaw G, Uthaman S, Hassan N, et al. The emerging role of Raman spectroscopy as an omics approach for metabolic profiling and biomarker detection toward precision medicine[J]. Chemical Reviews, 2023, 123(13): 8297-8346.

    [76] [76] Sarycheva A, Makaryan T, Maleski K, et al. Two-dimensional titanium carbide (MXene) as surface-enhanced Raman scattering substrate[J]. The Journal of Physical Chemistry C, 2017, 121(36): 19983-19988.

    [77] [77] Patra A, Mb B, Manasa G, et al. 2D MXenes as a promising candidate for surface enhanced raman spectroscopy: state of the art, recent trends, and future prospects[J]. Advanced Functional Materials, 2023, 33(42): 2306680.

    [78] [78] Liu Z W, Wang G, Li Y F, et al. Substrate types and applications of MXene for surface-enhanced Raman spectroscopy[J]. Frontiers in Chemistry, 2024, 12: 1378985.

    [79] [79] Liu F, Zhao J, Liu X, et al. PEC-SERS Dual-Mode Detection of Foodborne Pathogens Based on Binding-Induced DNA Walker and C3N4/MXene-Au NPs Accelerator[J]. Analytical Chemistry, 2023, 95(38): 14297-14307.

    [81] [81] Yu Y, Tang Y, Chu K, et al. High-resolution low-power hyperspectral line-scan imaging of fast cellular dynamics using azo-enhanced Raman scattering probes[J]. Journal of the American Chemical Society, 2022, 144(33): 15314-15323.

    [82] [82] Tang Y, Zhuang Y, Zhang S, et al. Azo-enhanced Raman scattering for enhancing the sensitivity and tuning the frequency of molecular vibrations[J]. ACS Central Science, 2021, 7(5): 768-780.

    [83] [83] Spitzberg J D, Zrehen A, Van Kooten X F, et al. Plasmonic-nanopore biosensors for superior single-molecule detection[J]. Advanced Materials, 2019, 31(23): 1900422.

    Tools

    Get Citation

    Copy Citation Text

    XIE Baokang, LIU Shaochuang, YING Yilun, LONG Yitao. Integrated Nanopore Electrochemistry-Raman Spectroscopy for Single-Molecule Sensing[J]. The Journal of Light Scattering, 2024, 36(3): 330

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: May. 15, 2024

    Accepted: Nov. 21, 2024

    Published Online: Nov. 21, 2024

    The Author Email: Shaochuang LIU (shaochuangliu@nju.edu.cn)

    DOI:10.13883/j.issn1004-5929.202403009

    Topics