Chinese Journal of Lasers, Volume. 51, Issue 2, 0213003(2024)
Ultra-wideband UV Absorber Based on Rhodium Metal and Silica Materials
[1] Kneissl M, Seong T Y, Han J et al. The emergence and prospects of deep-ultraviolet light-emitting diode technologies[J]. Nature Photonics, 13, 233-244(2019).
[2] Zou G H, Ok K M. Novel ultraviolet (UV) nonlinear optical (NLO) materials discovered by chemical substitution-oriented design[J]. Chemical Science, 11, 5404-5409(2020).
[3] Khan J K, He X X, Khan H M et al. Oxidative degradation of atrazine in aqueous solution by UV/H2O2/Fe2+, UV/S2O82-/Fe2+ and UV/ HSO5-/Fe2+ processes: a comparative study[J]. Chemical Engineering Journal, 218, 376-383(2013).
[4] Song K, Mohseni M, Taghipour F. Application of ultraviolet light-emitting diodes (UV-LEDs) for water disinfection: a review[J]. Water Research, 94, 341-349(2016).
[5] Watts M J, Linden K G. Chlorine photolysis and subsequent OH radical production during UV treatment of chlorinated water[J]. Water Research, 41, 2871-2878(2007).
[6] Xu T Q, Zhang J C, Salehizadeh M et al. Millimeter-scale flexible robots with programmable three-dimensional magnetization and motions[J]. Science Robotics, 4, eaav4494(2019).
[7] Sun K, Tan D Z, Fang X Y et al. Three-dimensional direct lithography of stable perovskite nanocrystals in glass[J]. Science, 375, 307-310(2022).
[8] Verdaguer D, Jansen M A K, Llorens L et al. UV-a radiation effects on higher plants: exploring the known unknown[J]. Plant Science, 255, 72-81(2017).
[9] Xu X J, Chen J X, Cai S et al. A real-time wearable UV-radiation monitor based on a high-performance p-CuZnS/n-TiO2 photodetector[J]. Advanced Materials, 30, 1803165(2018).
[10] Slominski A T, Zmijewski M A, Plonka P M et al. How UV light touches the brain and endocrine system through skin, and why[J]. Endocrinology, 159, 1992-2007(2018).
[11] Qian Y, Qiu X Q, Zhu S P. Lignin: a nature-inspired Sun blocker for broad-spectrum sunscreens[J]. Green Chemistry, 17, 320-324(2015).
[12] Qian Y, Zhong X W, Li Y et al. Fabrication of uniform lignin colloidal spheres for developing natural broad-spectrum sunscreens with high Sun protection factor[J]. Industrial Crops and Products, 101, 54-60(2017).
[13] Cui Y X, He Y R, Jin Y et al. Plasmonic and metamaterial structures as electromagnetic absorbers[J]. Laser & Photonics Reviews, 8, 495-520(2014).
[14] Zhang J, Xue W R, Zhang C et al. Multi-groove ultraviolet absorber based on Bi1.5Sb0.5Te1.8Se1.2 material[J]. Chinese Journal of Lasers, 49, 1713003(2022).
[15] Chen Y T, Xue W R, Zhang J et al. Infrared ultra-wide-band absorber based on VO2, NaF, and TiO2[J]. Chinese Journal of Lasers, 50, 0613001(2023).
[16] Honda M, Kumamoto Y, Taguchi A et al. Plasmon-enhanced UV photocatalysis[J]. Applied Physics Letters, 104, 061108(2014).
[17] Zhou J Y, Yan S A, Li C W et al. Perfect ultraviolet absorption in graphene using the magnetic resonance of an all-dielectric nanostructure[J]. Optics Express, 26, 18155-18163(2018).
[18] Morsy A M, Povinelli M L, Hennessy J. Highly selective ultraviolet aluminum plasmonic filters on silicon[J]. Optics Express, 26, 22650-22657(2018).
[19] Zhu J F, Yan S A, Feng N X et al. Near unity ultraviolet absorption in graphene without patterning[J]. Applied Physics Letters, 112, 153106(2018).
[20] Mehrabi S, Rezaei M H, Zarifkar A. Ultra-broadband metamaterial absorber based on cross-shaped TiN resonators[J]. Journal of the Optical Society of America A, 37, 697-704(2020).
[21] Wan M L, He J N, Ji P F et al. Excitation of ultraviolet range Dirac-type plasmon resonance with an ultra-high Q-factor in the topological insulator Bi1.5Sb0.5Te1.8Se1.2 nanoshell[J]. Optics Express, 29, 9252-9260(2021).
[22] Li F F, Issah I, Baah M et al. Polarization-dependent wideband metamaterial absorber for ultraviolet to near-infrared spectral range applications[J]. Optics Express, 30, 25974-25984(2022).
[23] West P R, Ishii S, Naik G V et al. Searching for better plasmonic materials[J]. Laser & Photonics Reviews, 4, 795-808(2010).
[24] Naik G V, Shalaev V M, Boltasseva A. Alternative plasmonic materials: beyond gold and silver[J]. Advanced Materials, 25, 3264-3294(2013).
[25] Watson A M, Zhang X A, Alcaraz de la Osa R et al. Rhodium nanoparticles for ultraviolet plasmonics[J]. Nano Letters, 15, 1095-1100(2015).
[26] Zhang X, Li P, Barreda Á et al. Size-tunable rhodium nanostructures for wavelength-tunable ultraviolet plasmonics[J]. Nanoscale Horizons, 1, 75-80(2016).
[27] Gutiérrez Y, Alcaraz de la Osa R, Ortiz D et al. Plasmonics in the ultraviolet with aluminum, gallium, magnesium and rhodium[J]. Applied Sciences, 8, 64(2018).
[28] Palik E D[M]. Handbook of optical constants of solids, 342-349(1998).
[29] Huang J, Li J N, Yang Y E et al. Active controllable dual broadband terahertz absorber based on hybrid metamaterials with vanadium dioxide[J]. Optics Express, 28, 7018-7027(2020).
Get Citation
Copy Citation Text
Haotian Fan, Wenrui Xue, Yuting Chen, Fanyi Meng, Changyong Li. Ultra-wideband UV Absorber Based on Rhodium Metal and Silica Materials[J]. Chinese Journal of Lasers, 2024, 51(2): 0213003
Category: micro and nano optics
Received: May. 18, 2023
Accepted: Jun. 13, 2023
Published Online: Jan. 4, 2024
The Author Email: Xue Wenrui (wrxue@sxu.edu.cn)
CSTR:32183.14.CJL230846