Journal of the Chinese Ceramic Society, Volume. 53, Issue 8, 2219(2025)
Effect of Gradient Porosity in Anodes on Creep Damage in Solid Oxide Fuel Cells
[1] [1] WANG Y, JIANG W C, LUO Y, et al. Evolution of thermal stress and failure probability during reduction and re-oxidation of solid oxide fuel cell[J]. J Power Sources, 2017, 371: 65-76.
[2] [2] HAO S J, WANG C, LIU T L, et al. Fabrication of nanoscale yttria stabilized zirconia for solid oxide fuel cell[J]. Int J Hydrog Energy, 2017, 42(50): 29949-29959.
[3] [3] FAN P F, LI G J, ZENG Y K, et al. Numerical study on thermal stresses of a planar solid oxide fuel cell[J]. Int J Therm Sci, 2014, 77: 1-10.
[4] [4] XU M, LI T S, YANG M, et al. Modeling of an anode supported solid oxide fuel cell focusing on thermal stresses[J]. Int J Hydrog Energy, 2016, 41(33): 14927-14940.
[5] [5] BERTEI A, NUCCI B, NICOLELLA C. Microstructural modeling for prediction of transport properties and electrochemical performance in SOFC composite electrodes[J]. Chem Eng Sci, 2013, 101: 175-190.
[6] [6] BOCCACCINI D N, FRANDSEN H L, SOPRANI S, et al. Influence of porosity on mechanical properties of tetragonal stabilized zirconia[J]. J Eur Ceram Soc, 2018, 38(4): 1720-1735.
[7] [7] MORI M, YAMAMOTO T, ITOH H, et al. Thermal expansion of nickel‐zirconia anodes in solid oxide fuel cells during fabrication and operation[J]. J Electrochem Soc, 2019, 145(4): 1374-1381.
[8] [8] SHI J X, XUE X J. CFD analysis of a symmetrical planar SOFC with heterogeneous electrode properties[J]. Electrochim Acta, 2010, 55(18): 5263-5273.
[9] [9] GIRAUD S, CANEL J. Young’s modulus of some SOFCs materials as a function of temperature[J]. J Eur Ceram Soc, 2008, 28(1): 77-83.
[10] [10] SELUK A, ATKINSON A. Elastic properties of ceramic oxides used in solid oxide fuel cells (SOFC)[J]. J Eur Ceram Soc, 1997, 17(12): 1523-1532.
[12] [12] KONG J R, SUN K N, ZHOU D R, et al. Ni-YSZ gradient anodes for anode-supported SOFCs[J]. J Power Sources, 2007, 166(2): 337-342.
[13] [13] ASMANI M, KERMEL C, LERICHE A, et al. Influence of porosity on Young’s modulus and Poisson’s ratio in alumina ceramics[J]. J Eur Ceram Soc, 2001, 21(8): 1081-1086.
[15] [15] PIHLATIE M, KAISER A, MOGENSEN M. Mechanical properties of NiO/Ni-YSZ composites depending on temperature, porosity and redox cycling[J]. J Eur Ceram Soc, 2009, 29(9): 1657-1664.
[16] [16] LUO Y, JIANG W C, ZHANG Q, et al. Effects of anode porosity on thermal stress and failure probability of planar solid oxide fuel cell with bonded compliant seal[J]. Int J Hydrog Energy, 2016, 41(18): 7464-7474.
[20] [20] GUO M T, LIN Z J. Long-term evolution of mechanical performance of solid oxide fuel cell stack and the underlying mechanism[J]. Int J Hydrog Energy, 2021, 46(47): 24293-24304.
[21] [21] WEN J F, TU S T, GAO X L, et al. Simulations of creep crack growth in 316 stainless steel using a novel creep-damage model[J]. Eng Fract Mech, 2013, 98: 169-184.
[22] [22] FRANDSEN H L, MAKOWSKA M, GRECO F, et al. Accelerated creep in solid oxide fuel cell anode supports during reduction[J]. J Power Sources, 2016, 323: 78-89.
[23] [23] Jiang W C, Luo Y, Zhang W, et al. Effect of temperature fluctuation on creep and failure probability for planar solid oxide fuel cell[J]. Journal of Fuel Cell Science and Technology, 2015, 12(5): 051004.
[24] [24] LAURENCIN J, DELETTE G, USSEGLIO-VIRETTA F, et al. Creep behaviour of porous SOFC electrodes: Measurement and application to Ni-8YSZ cermets[J]. J Eur Ceram Soc, 2011, 31(9): 1741-1752.
[25] [25] MORALES-RODRUEZ A, BRAVO-LEN A, DOMNGUEZ-RODRGUEZ A, et al. High-temperature mechanical properties of zirconia/nickel composites[J]. J Eur Ceram Soc, 2003, 23(15): 2849-2856.
[26] [26] IGUCHI F, ENDO Y, ISHIDA T, et al. Oxygen partial pressure dependence of creep on yttria-doped ceria ceramics[J]. Solid State Ion, 2005, 176(5/6): 641-644.
[27] [27] ZHANG Y C, ZHAO H Q, JIANG W C, et al. Time dependent failure probability estimation of the solid oxide fuel cell by a creep-damage related Weibull distribution model[J]. Int J Hydrog Energy, 2018, 43(29): 13532-13542.
[29] [29] CHANG H T, LIN C K, LIU C K, et al. High-temperature mechanical properties of a solid oxide fuel cell glass sealant in sintered forms[J]. J Power Sources, 2011, 196(7): 3583-3591.
[30] [30] ZENG S M, XU M, PARBEY J, et al. Thermal stress analysis of a planar anode-supported solid oxide fuel cell: Effects of anode porosity[J]. Int J Hydrog Energy, 2017, 42(31): 20239-20248.
[31] [31] SAANOUNI K, CHABOCHE J L, BATHIAS C. On the creep crack growth prediction by a local approach[J]. Eng Fract Mech, 1986, 25(5/6): 677-691.
[32] [32] JIANG W C, ZHANG Y C, WOO W, et al. Three-dimensional simulation to study the influence of foil thickness on residual stress in the bonded compliant seal design of planar solid oxide fuel cell[J]. J Power Sources, 2012, 209: 65-71.
[33] [33] VAIDYA S, KIM J H. Finite element thermal stress analysis of solid oxide fuel cell cathode microstructures[J]. J Power Sources, 2013, 225: 269-276.
Get Citation
Copy Citation Text
SONG Ming, XIA Fanchen, WANG Bingying, ZHANG Yucai, WANG Yu, WU Qiong. Effect of Gradient Porosity in Anodes on Creep Damage in Solid Oxide Fuel Cells[J]. Journal of the Chinese Ceramic Society, 2025, 53(8): 2219
Category:
Received: Jan. 14, 2025
Accepted: Sep. 5, 2025
Published Online: Sep. 5, 2025
The Author Email: SONG Ming (songmingx@gmail.com)