Journal of Applied Optics, Volume. 44, Issue 5, 1030(2023)
Classification of combustion state of sintering flame based on CNN-Transformer dual-stream network
[1] WANG Fubin, LIU Hefei, HE Jianghong et al. Analysis of sintering operation process parameters and construction of sintering behavior model[J]. Sintering Pellet, 45, 29-34(2020).
[2] WANG Fubin, LIU Hefei, WANG Rui et al. Multi-core Boosting saliency detection of flame images of sintered sections[J]. Journal of Computer Aided Design and Graphics, 33, 1466-1474(2021).
[3] LI Jinagyun, YANG Zhifang, ZHENG Junfeng et al. Application of deep learning technology in iron and steel industry[J]. Iron and Steel, 56, 43-49(2021).
[4] KRIZHEVSKY A, SUTSKEVER I, HINTON G. ImageNet classification with deep convolutional neural networks[J]. Communications of the ACM, 60, 84-90.(2017).
[5] HE K, ZHANG X, REN S et al. Deep residual learning for image recognition[C](2016).
[8] ZHANG Qianchuang, GUO Chenxia, YANG Ruifeng et al. Super resolution reconstruction of optical fiber ring image based on lightweight network[J]. Applied Optics, 43, 913-920(2022).
[14] SZEGEDY C, VANHOUCKE V, IOFFE S et al. Rethinking the inception architecture for computer vision[C], 2818-2826(2016).
[15] SANDLER M, HOWARD A, ZHU M et al. Mobilenetv2: inverted residuals and linear bottlenecks[C], 4510-4520(2018).
Get Citation
Copy Citation Text
Xiuman LIANG, Jinming AN, Xiaohua CAO, Kai ZENG, Fubin WANG, Hefei LIU. Classification of combustion state of sintering flame based on CNN-Transformer dual-stream network[J]. Journal of Applied Optics, 2023, 44(5): 1030
Category: Research Articles
Received: Sep. 14, 2022
Accepted: --
Published Online: Mar. 12, 2024
The Author Email: Kai ZENG (曾凯)