Laser & Optoelectronics Progress, Volume. 60, Issue 10, 1010010(2023)

Detection Algorithm of Recyclable Garbage Based on Improved YOLOv5s

Anneng Luo1, Haibin Wan1,2、*, Zhiwei Si1, and Tuanfa Qin1,2
Author Affiliations
  • 1School of Computer, Electronics and Information, Guangxi University, Nanning 530004, Guangxi , China
  • 2Guangxi Key Laboratory of Multimedia Communications and Network Technology, Nanning 530004, Guangxi , China
  • show less
    Figures & Tables(12)
    YOLOv5s network structure
    Basic unit of ShuffleNet v2
    DW module unit
    Structure diagram. (a) Schematic of Neck fusion; (b) schematic of improved YOLOv5s overall network
    Statistic on number of labels in each class on the dataset
    Original image and image obtained by modules.(a) Original image; (b) image obtained by CBS module; (c) image obtained by S-b module
    Comparison of indicators between the improved model and YOLOv5s in training process
    • Table 1. Configuration of backbone network structure and parameters

      View table

      Table 1. Configuration of backbone network structure and parameters

      Serial numbernParamsModuleConfigurationOutput size
      013520Focus[3,32,3]32×320×320
      113968S-b[32,64,2]64×160×160
      212528S-a[64,64,1]64×160×160
      3114080S-b[64,128,2]128×80×80
      4327456S-a[128,128,1]128×80×80
      5152736S-b[128,256,2]256×40×40
      63104064S-a[256,256,1]256×40×40
      71203776S-b[256,512,2]512×20×20
      81656896SPP[512,512,5,9,13]512×20×20
      91134912S-a[512,512,1]512×20×20
    • Table 2. Ablation experiment data of general category

      View table

      Table 2. Ablation experiment data of general category

      BackboneNeckP /%R /%mAP_0.5 /%mAP_0.5∶0.95 /%Parameters /106Memory /MB
      89.3785.1892.0968.887.0913.7
      88.8589.4393.3668.104.088.03
      88.4189.1593.0371.405.6911.05
      90.1289.9594.0171.302.685.34
    • Table 3. Experimental data for ablation of individual class

      View table

      Table 3. Experimental data for ablation of individual class

      ClassP /%R /%AP /%
      YOLOv5sProposed modelYOLOv5sProposed modelYOLOv5sProposed model
      Edible oil barrels9394.191.597.997.297.4
      Pop cans84.490.176.385.98991.8
      Cartons90.891.491.793.596.397.3
      Metal cans81.880.978.985.38488.7
      Beverage bottles77.381.774.476.282.986.1
      Plugs and wires82.686.567.678.280.688.2
      Book and paper94.79594.697.598.198.2
      Pans95.993.387.291.796.497.7
      Scissors97.290.489.693.397.195.2
      Bowls9697.810010099.399.5
    • Table 4. Comparison experiments with common models

      View table

      Table 4. Comparison experiments with common models

      ModelP /%R /%mAP_0.5 /%Parameter /106Memory /MB
      Faster-RCNN(ResNet50)68.5094.1592.3228.3108.48
      YOLOv388.4774.2585.8361.9235.71
      YOLOv487.8385.6088.5063.9244.48
      YOLOv5s89.4085.2092.107.0913.70
      YOLOx-s92.1392.5394.408.9434.29
      Proposed model90.1289.9594.012.685.34
    • Table 5. Comparison of processing time at Jeson Nano

      View table

      Table 5. Comparison of processing time at Jeson Nano

      Image sizeModelPreprocessing time /msInference time /msNMS time /msFP time /ms
      640×640Yolov5s1.6182.310.1194
      Proposed model1.5160.29.9171.6
      512×512Yolov5s1.1123.39.2133.6
      Proposed model1.1108.28.8118.1
      416×416Yolov5s0.982.98.091.8
      Proposed model0.973.27.481.5
      320×320Yolov5s0.856.06.563.3
      Proposed model0.748.55.654.8
    Tools

    Get Citation

    Copy Citation Text

    Anneng Luo, Haibin Wan, Zhiwei Si, Tuanfa Qin. Detection Algorithm of Recyclable Garbage Based on Improved YOLOv5s[J]. Laser & Optoelectronics Progress, 2023, 60(10): 1010010

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Image Processing

    Received: Jan. 21, 2022

    Accepted: Mar. 1, 2022

    Published Online: May. 10, 2023

    The Author Email: Haibin Wan (hbwan@gxu.edu.cn)

    DOI:10.3788/LOP220603

    Topics