Infrared and Laser Engineering, Volume. 51, Issue 3, 20220087(2022)
Research progress in 2 μm waveband on-chip photonic integrated devices (Invited)
[1] Li Z, Heidt A, Simakov N, et al. Diode-pumped wideband thulium-doped fiber amplifiers for optical communications in the 1800-2050 nm window[J]. Optics Express, 21, 26450-26455(2013).
[2] Roberts P, Couny F, Sabert H, et al. Ultimate low loss of hollow-core photonic crystal fibres[J]. Optics Express, 13, 236-244(2005).
[3] Petrovich M, Poletti F, Wooler J P, et al. Demonstration of amplified data transmission at 2 microm in a low-loss wide bandwidth hollow core photonic bandgap fiber[J]. Optics Express, 21, 28559-28569(2013).
[4] [4] Shen W, Du J, Sun L, et al. 100Gbps 100m hollowce fiber optical interconnection at 2micron waveb by PSDMT [C]Optical Fiber Communications Conference Exposition, 2020: 1.
[5] Liu Z, Chen Y, Li Z, et al. High-capacity directly modulated optical transmitter for 2-μm spectral region[J]. Journal of Lightwave Technology, 33, 1373-1379(2015).
[6] Xu K, Sun L, Xie Y, et al. Transmission of IM/DD signals at 2 μm wavelength using PAM and CAP[J]. IEEE Photonics Journal, 8, 1-7(2016).
[7] [7] Shen W, Du J, Wang C, et al. Single lane 90Gbps optical interconnection at 2micron waveb [C]Optoelectronics Communications Conference, 2019: 36.
[8] Shen W, Du J, Sun L, et al. Low-latency and high-speed hollow-core fiber optical interconnection at 2-micron waveband[J]. Journal of Lightwave Technology, 38, 3874-3882(2020).
[9] Gu Y, Zhang Y, Cao Y, et al. 2.4 µm InP-based antimony-free triangular quantum well lasers in continuous-wave operation above room temperature[J]. Applied Physics Express, 7, 032701(2014).
[10] Wang R, Sprengel S, Malik A, et al. Heterogeneously integrated III-V-on-silicon 2.3 x μm distributed feedback lasers based on a type-II active region[J]. Applied Physics Letters, 109, 221111(2016).
[11] Kiani K, Frankis H, Mateman R, et al. Thulium-doped tellurium oxide microring lasers integrated on a low-loss silicon nitride platform[J]. Optical Materials Express, 11, 3656-3665(2021).
[12] Li N, Magden E, Su Z, et al. Broadband 2-µm emission on silicon chips: Monolithically integrated Holmium lasers[J]. Optics Express, 26, 2220-2230(2015).
[13] Latawiec P, Venkataraman V, Burek J, et al. On-chip diamond Raman laser[J]. Optica, 2, 924-928(2015).
[14] Volet N, Spott A, Stanton J, et al. Semiconductor optical amplifiers at 2.0-µm wavelength on silicon[J]. Laser Photonics Reviews, 11, 1600165(2017).
[15] Kiani K, Frankis H, Mateman R, et al. Thulium-doped tellurium oxide waveguide amplifier with 7.6 dB net gain on a silicon nitride chip[J]. Optics Letters, 44, 5788-5791(2019).
[16] Wang R, Sprengel S, Muneeb M, et al. 2 μm wavelength range InP-based type-II quantum well photodiodes heterogeneously integrated on silicon photonic integrated circuits[J]. Optics Express, 23, 26834-26841(2015).
[17] Nedeljkovic M, Soref R, Mashanovich G. Free-carrier electrorefraction and electroabsorption modulation predictions for silicon over the 1-14μm infrared wavelength range[J]. IEEE Photonics Journal, 3, 1171-1180(2011).
[18] Li D, Liu Y, Song Q, et al. Millimeter-long silicon photonic antenna for optical phased arrays at 2-μm wavelength band[J]. IEEE Photonics Journal, 13, 1-7(2021).
[19] Van Camp M A, Assefa S, Gill D, et al. Demonstration of electrooptic modulation at 2165 nm using a silicon Mach-Zehnder interferometer[J]. Optics Express, 20, 28009-28016(2012).
[20] Cao W, Hagan D, Thomson D, et al. High-speed silicon modulators for the 2 μm wavelength band[J]. Optica, 5, 1055-1062(2018).
[21] [21] Li W, Li M, Zhang H, et al. 50 Gbits silicon modulat operated at 1950 nm [C]Optical Fiber Communications Conference Exposition, 2020: 4.
[22] Wang X, Shen W, Li W, et al. High-speed silicon photonic Mach–Zehnder modulator at 2 μm[J]. Photonics Research, 9, 535-540(2021).
[23] [23] Shen W, Zhou G, Du J, et al. Highspeed silicon microring modulat at 2μm waveb [C]Optoelectronics Communications Conference, 2021: 7.
[24] Wang C, Zhang M, Chen X, et al. Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages[J]. Nature, 562, 101-104(2018).
[25] Pan B, Hu J, Huang Y, et al. Demonstration of high-speed thin-film lithium-niobate-on-insulator optical modulators at the 2-microm wavelength[J]. Optics Express, 29, 17710-17717(2021).
[26] Anthony R, Hagan D, Genuth-Okon D, et al. Extended wavelength responsivity of a Germanium photodetector integrated with a silicon waveguide exploiting the indirect transition[J]. IEEE Journal of Selected Topics in Quantum Electronics, 26, 1-7(2020).
[27] Ackert J, Thomson D, Shen L, et al. High-speed detection at two micrometres with monolithic silicon photodiodes[J]. Nature Photonics, 9, 393-396(2015).
[28] Xu S, Wang W, Huang Y, et al. High-speed photo detection at two-micron-wavelength: technology enablement by GeSn/Ge multiple-quantum-well photodiode on 300 mm Si substrate[J]. Optics Express, 27, 5798-5813(2019).
[29] Tossoun B, Zang J, Addamane S, et al. InP-based waveguide-integrated photodiodes with InGaAs/GaAsSb type-II quantum wells and 10-GHz bandwidth at 2 μm wavelength[J]. Journal of Lightwave Technology, 36, 4981-4987(2018).
[30] Yin Y, Cao R, Guo J, et al. High‐speed and high‐responsivity hybrid silicon/Black‐Phosphorus waveguide photodetectors at 2 µm[J]. Laser & Photonics Reviews, 13, 1900032(2019).
[31] Guo J, Li J, Liu C, et al. High-performance silicon-graphene hybrid plasmonic waveguide photodetectors beyond 1.55μm[J]. Light: Science & Applications, 9, 1-11(2020).
[32] Wun J, Wang Y, Chen Y, et al. GaSb-based p-i-n photodiodes with partially depleted absorbers for high-speed and high-power performance at 2.5μm wavelength[J]. IEEE Transactions on Electron Devices, 63, 2796-2801(2016).
[33] Tossoun B, Stephens R, Wang Y, et al. High-speed InP-based p-i-n photodiodes with InGaAs/GaAsSb type-II quantum wells[J]. IEEE Photonics Technology Letters, 30, 399-402(2018).
[34] Chen Y, Xie Z, Huang J, et al. High-speed uni-traveling carrier photodiode for 2 μm wavelength application[J]. Optica, 6, 884-889(2019).
[35] Mcintyre R. Multiplication noise in uniform avalanche diodes[J]. IEEE Transactions on Electron Devices, 13, 164-168(1966).
[36] People R, Bean J. Calculation of critical layer thickness versus lattice mismatch for Ge
[37] Zhou H, Xu S, Lin Y, et al. High-efficiency GeSn/Ge multiple-quantum-well photodetectors with photon-trapping microstructures operating at 2 microm[J]. Optics Express, 28, 10280-10293(2020).
[38] Ma H, Yang H, Tang B, et al. Passive devices at 2 µm wavelength on 200 mm CMOS-compatible silicon photonics platform[J]. Chinese Optics Letters, 19, 071301(2021).
[39] Li J, Liu Y, Meng Y, et al. 2 μm wavelength grating coupler, bent waveguide, and tunable microring on silicon photonic MPW[J]. IEEE Photonics Technology Letters, 30, 471-474(2018).
[40] Zhang L, Zhang W, Wang X, et al. Investigation of Ge20Sb15Se65 photonic crystal slab waveguides with slow light at infrared wavelength[J]. Optical Materials Express, 3, 1438-1443(2013).
[41] Shen W, Zeng P, Yang Z, et al. Chalcogenide glass photonic integration for improved 2 μm optical interconnection[J]. Photonics Research, 8, 1484-1490(2020).
[42] [42] Muratsubaki T, Fujisawa T, Sawada Y, et al. Fabricationtolerant fourmode waveguide crossing based on PhClike subwavelength structures at 2 µm [C]Advanced Photonics Congress, 2021: 3.
[43] Ruan Z, Shen L, Zheng S, et al. Subwavelength grating slot (SWGS) waveguide at 2 μm for chip-scale data transmission[J]. Nanophotonics, 7, 865-871(2018).
[44] Lamy M, Finot C, Parriaux A, et al. Si-rich silicon-nitride waveguides for optical transmissions and towards wavelength conversion around 2 µm[J]. Applied Optics, 58, 5165-5169(2019).
[45] [45] Li J, Liu L, Sun W, et al. The 2μm fullyetched silicon grating coupler [C]Conference on Lasers ElectroOptics Pacific Rim, 2017.
[46] [46] Wang Z, Liu Y, Wang S, et al. Ultracompact broadb 3dB power splitter based on subwavelength grating at 2μm [C]Optical Fiber Communications Conference Exposition, 2021: 5.
[47] Xie H, Liu Y, Sun W, et al. Inversely designed 1 × 4 power splitter with arbitrary ratios at 2-μm spectral band[J]. IEEE Photonics Journal, 10, 1-6(2018).
[48] Stanton E, Volet N, Bowers J. Silicon arrayed waveguide gratings at 2.0-mum wavelength characterized with an on-chip resonator[J]. Optics Letters, 43, 1135-1138(2018).
[49] Liu Y, Li Z, Li D, et al. Thermo-optic tunable silicon arrayed waveguide grating at 2-μm wavelength band[J]. IEEE Photonics Journal, 12, 1-8(2020).
[50] Liu Y, Wang X, Yao Y, et al. Silicon photonic arrayed waveguide grating with 64 channels for the 2 µm spectral range[J]. Optics Letters, 47, 1186-1189(2022).
[51] Zhang H, Gleeson M, Ye N, et al. Dense WDM transmission at 2 µm enabled by an arrayed waveguide grating[J]. Optics Letters, 40, 3308-3311(2015).
[52] [52] Huang M, Zheng S, Long Y, et al. Experimental demonstration of 2μm onchip twomode division multiplexing using tapered directional couplerbased mode (de) multiplexer [C]Optical Fiber Communications Conference Exposition, 2018: 6.
[53] Zheng S, Huang M, Cao X, et al. Silicon-based four-mode division multiplexing for chip-scale optical data transmission in the 2 μm waveband[J]. Photonics Research, 7, 1030-1035(2019).
[54] [54] Zheng S, Huang M, Cao X, et al. Demonstration of 2 um onchip twomode division multiplexing using tapered directional couplerbased mode (de)multiplexer [C]Conference on Lasers ElectroOptics, 2018: 5.
[55] Liu D, Wu H, Dai D. Silicon multimode waveguide grating filter at 2 μm[J]. Journal of Lightwave Technology, 37, 2217-2222(2019).
[56] Shen L, Huang M, Zheng S, et al. High-performance silicon 2 × 2 thermo-optic switch for the 2 μm wavelength band[J]. IEEE Photonics Journal, 11, 1-6(2019).
[57] [57] Yu T, Liu Y, Li Z, et al. Integrated thermooptic switch f 2 μm spectral b [C]The International Photonics Optoelectronics Meeting, 2019: 4.
[58] Xu J, Li X, Qiao Z, et al. 1×N (N=2, 8) silicon selector switch for prospective technologies at the 2 μm waveband[J]. IEEE Photonics Technology Letters, 32, 1127-1130(2020).
[59] Zhong C, Ma H, Sun C, et al. Fast thermo-optical modulators with doped-silicon heaters operating at 2 μm[J]. Optics Express, 29, 23508-23516(2021).
Get Citation
Copy Citation Text
Xi Wang, Yingjie Liu, Zimeng Zhang, Jianing Wang, Yong Yao, Qinghai Song, Ke Xu. Research progress in 2 μm waveband on-chip photonic integrated devices (Invited)[J]. Infrared and Laser Engineering, 2022, 51(3): 20220087
Category: Special issue-Mid-infrared integrated optoelectronic technology
Received: Jan. 24, 2022
Accepted: Mar. 14, 2022
Published Online: Apr. 8, 2022
The Author Email: