Journal of Optoelectronics · Laser, Volume. 35, Issue 4, 344(2024)

Lightweight pedestrian detection based on multi-scale information and cross-dimensional feature guidance

ZHANG Yunzuo1,2、*, LI Wenbo1, and GUO Wei1
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    References(16)

    [1] [1] PATTANAYAK S,NINGTHOUJAM C,PRADHAN N.A survey on pedestrian detection system using computer vision and deep learning[M]//GANDHI T K,KONAR D,SEN B,et al.Advanced computational paradigms and hybrid intelligent computing.Advances in intelligent systems and computing,vol.1373.Singapore:Springer,2022:419-429.

    [2] [2] SABZMEYDANI P,MORI G.Detecting pedestrians by learning shapelet features[C]//IEEE Conference on Computer Vision and Pattern Recognition,June 18-23,2007,Minneapolis,Minnesota,USA.New York:IEEE,2007:1-8.

    [5] [5] CAO J L,PANG Y W,HAN J G,et al.Taking a look at small-scale pedestrians and occluded pedestrians[J].IEEE Transactions on Image Processing,2019,29:3143-3152.

    [6] [6] BRAZIL G,LIU X M.Pedestrian detection with autoregressive network phases[C]//IEEE Conference on Computer Vision and Pattern Recognition,June 16-20,2019,Long Beach,CA,USA.New York:IEEE,2019:7231-7240.

    [7] [7] ZHUANG C B,LI Z Z,ZHU X Y,et al.SADet:Learning an efficient and accurate pedestrian detector[C]//IEEE International Joint Conference on Biometrics,August 4-7,2021,Shenzhen,China.New York:IEEE,2021:1-8.

    [8] [8] MUCHTAR K,SADDAMI K,BINTANG A,et al.Lightweight pedestrian detection through guided filtering and deep learning[C]//IEEE 10th Global Conference on Consumer Electronics,October 12-15,2021,Kyoto,Japan.New York:IEEE,2021:629-630.

    [9] [9] QUE L Y,ZHANG T,GUO H T,et al.A lightweight pedestrian detection engine with two-stage low-complexity detection network and adaptive region focusing technique[J].Sensors,2021,21(17): 5851.

    [10] [10] YANG X T,LIU Q.Scale-sensitive feature reassembly network for pedestrian detection[J].Sensors,2021,21(12):4189.

    [11] [11] GE Z,LIU S T,WANG F,et al.YOLOX:Exceeding YOLO series in 2021[EB/OL].(2021-08-06) [2022-09-14].https://arxiv.org/abs/2107.08430v2.

    [12] [12] HAN K,WANG Y H,TINA Q,et al.GhostNet:more features from cheap operations[C]//IEEE Conference on Computer Vision and Pattern Recognition,June 13-19,2020,Seattle,WA,USA.New York:IEEE,2020:1580-1589.

    [13] [13] CHOLLET F.Xception:Deep learning with depthwise separable convolutions[C]//IEEE Conference on Computer Vision and Pattern Recognition,July 21-26,2017,Honolulu,HI,USA.New York:IEEE,2017:1251-1258.

    [15] [15] WANG S G,CHENG J,LIU H J,et al.PCN:part and context information for pedestrian detection with CNNs[EB/OL].(2018-04-12) [2022-09-14].https:// arxiv.org/abs/1804.04483.

    [16] [16] REN S Q,HE K M,GIRSHICK R,et al.Faster R-CNN:Towards real-time object detection with region proposal networks[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2016,39(6):1137-1149.

    [17] [17] YANG P Y,ZHANG G F,WANG L,et al.A part-aware multi-scale fully convolutional network for pedestrian detection[J].IEEE Transactions on Intelligent Transportation Systems,2020,22(2):1125-1137.

    [18] [18] LIU W,ANGUELOV D,ERHAN D,et al.SSD: single shot multibox detector[C]//Proceedings of European Conference on Computer Vision,October 11-14,2016,Amsterdam,The Netherlands.Singapore: Springer,2016:21-37.

    [19] [19] REDMON J,FARHADI A.YOLOv3:An incremental improvement[EB/OL].(2018-04-08) [2022-09-14].https://arxiv.org/ abs/1804.02767.

    Tools

    Get Citation

    Copy Citation Text

    ZHANG Yunzuo, LI Wenbo, GUO Wei. Lightweight pedestrian detection based on multi-scale information and cross-dimensional feature guidance[J]. Journal of Optoelectronics · Laser, 2024, 35(4): 344

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Received: Sep. 14, 2022

    Accepted: --

    Published Online: Sep. 24, 2024

    The Author Email: ZHANG Yunzuo (zhangyunzuo888@sina.com)

    DOI:10.16136/j.joel.2024.04.0636

    Topics