APPLIED LASER, Volume. 41, Issue 4, 890(2021)

Reconstruction for Tunable Diode Laser Absorption Tomography Based on Convolutional Neural Networks

Wang Ming1、*, Xiang Peng2, Qi Jianmin1, She Guojin1, Wei Wei1, and Wang Yihong2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    References(17)

    [1] [1] HANSON R K. Applications of quantitative laser sensors to kinetics, propulsion and practical energy systems[J]. Proceedings of the Combustion Institute, 2011, 33(1): 1-40.

    [2] [2] MA L, LI X S, SANDERS S T, et al. 50-kHz-rate 2D imaging of temperature and H2O concentration at the exhaust plane of a J85 engine using hyperspectral tomography[J]. Optics Express, 2013, 21(1): 1152.

    [3] [3] LIU C, XU L J, CHEN J L, et al. Development of a fan-beam TDLAS-based tomographic sensor for rapid imaging of temperature and gas concentration[J]. Optics Express, 2015, 23(17): 22494.

    [4] [4] BRKLE S, BIONDO L, DING C P, et al. In-cylinder temperature measurements in a motored IC engine using TDLAS[J]. Flow, Turbulence and Combustion, 2018, 101(1): 139-159.

    [5] [5] YU T, CAI W W. Benchmark evaluation of inversion algorithms for tomographic absorption spectroscopy[J]. Applied Optics, 2017, 56(8): 2183-2194.

    [6] [6] DAUN K J, WASLANDER S L, TULLOCH B B. Infrared species tomography of a transient flow field using Kalman filtering[J]. Applied Optics, 2011, 50(6): 891-900.

    [7] [7] LIU C, XU L J, CAO Z, et al. Reconstruction of two-dimensional temperature distribution in swirling flames using TDLAS-based tomography[C]//2017 IEEE International Instrumentation and Measurement Technology Conference (I2MTC). May 22-25, 2017, Turin, Italy. IEEE, 2017: 1-4.

    [8] [8] MA L, CAI WW, CASWELL A W, et al. Tomographic imaging of temperature and chemical species based on hyperspectral absorption spectroscopy[J]. Optics Express, 2009, 17(10): 8602-8613.

    [9] [9] ZHANG Z R, SUN P S, PANG T, et al. Reconstruction of combustion temperature and gas concentration distributions using line-of-sight tunable diode laser absorption spectroscopy[J]. Optical Engineering, 2016, 55: 076107.

    [12] [12] HUANG J Q, LIU H C, DAI J H, et al. Reconstruction for limited-data nonlinear tomographic absorption spectroscopy via deep learning[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2018, 218: 187-193.

    [13] [13] LECUN Y, BENGIO Y, HINTON G. Deep learning[J]. Nature, 2015, 521(7553): 436-444.

    [14] [14] KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks[J]. Communications of the ACM, 2017, 60(6): 84-90.

    [15] [15] SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[EB/OL]. (2015-04-10)[2020-02-12].https://arxiv.org/pdf/1409.1556.pdf.2014.

    [16] [16] HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas: IEEE, 2016: 770-778.

    [17] [17] ZHANG H M, LI L, QIAO K, et al. Image prediction for limited-angle tomography via deep learning with convolutional neural network[EB/OL]. (2016-07-29)[2020-02-13].https://arxiv.org/ftp/arxiv/papers/1607/1607.08707.pdf.2016.

    [19] [19] ZEILER M D, FERGUS R. Visualizing and understanding convolutional networks[C]//Computer Vision-ECCV 2014, Berlin:Springer, 2014:818-833.

    CLP Journals

    [1] Pan Jinjie, Lin Dajun, Luan Haitao. A Phase Reconstruction Method of Broadband Light Source Based on Neural Network[J]. APPLIED LASER, 2022, 42(6): 137

    Tools

    Get Citation

    Copy Citation Text

    Wang Ming, Xiang Peng, Qi Jianmin, She Guojin, Wei Wei, Wang Yihong. Reconstruction for Tunable Diode Laser Absorption Tomography Based on Convolutional Neural Networks[J]. APPLIED LASER, 2021, 41(4): 890

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Received: Oct. 12, 2020

    Accepted: --

    Published Online: Jan. 10, 2022

    The Author Email: Ming Wang (jsnjwm@sina.com)

    DOI:10.14128/j.cnki.al.20214104.890

    Topics