APPLIED LASER, Volume. 41, Issue 4, 890(2021)
Reconstruction for Tunable Diode Laser Absorption Tomography Based on Convolutional Neural Networks
[1] [1] HANSON R K. Applications of quantitative laser sensors to kinetics, propulsion and practical energy systems[J]. Proceedings of the Combustion Institute, 2011, 33(1): 1-40.
[2] [2] MA L, LI X S, SANDERS S T, et al. 50-kHz-rate 2D imaging of temperature and H2O concentration at the exhaust plane of a J85 engine using hyperspectral tomography[J]. Optics Express, 2013, 21(1): 1152.
[3] [3] LIU C, XU L J, CHEN J L, et al. Development of a fan-beam TDLAS-based tomographic sensor for rapid imaging of temperature and gas concentration[J]. Optics Express, 2015, 23(17): 22494.
[4] [4] BRKLE S, BIONDO L, DING C P, et al. In-cylinder temperature measurements in a motored IC engine using TDLAS[J]. Flow, Turbulence and Combustion, 2018, 101(1): 139-159.
[5] [5] YU T, CAI W W. Benchmark evaluation of inversion algorithms for tomographic absorption spectroscopy[J]. Applied Optics, 2017, 56(8): 2183-2194.
[6] [6] DAUN K J, WASLANDER S L, TULLOCH B B. Infrared species tomography of a transient flow field using Kalman filtering[J]. Applied Optics, 2011, 50(6): 891-900.
[7] [7] LIU C, XU L J, CAO Z, et al. Reconstruction of two-dimensional temperature distribution in swirling flames using TDLAS-based tomography[C]//2017 IEEE International Instrumentation and Measurement Technology Conference (I2MTC). May 22-25, 2017, Turin, Italy. IEEE, 2017: 1-4.
[8] [8] MA L, CAI WW, CASWELL A W, et al. Tomographic imaging of temperature and chemical species based on hyperspectral absorption spectroscopy[J]. Optics Express, 2009, 17(10): 8602-8613.
[9] [9] ZHANG Z R, SUN P S, PANG T, et al. Reconstruction of combustion temperature and gas concentration distributions using line-of-sight tunable diode laser absorption spectroscopy[J]. Optical Engineering, 2016, 55: 076107.
[12] [12] HUANG J Q, LIU H C, DAI J H, et al. Reconstruction for limited-data nonlinear tomographic absorption spectroscopy via deep learning[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2018, 218: 187-193.
[13] [13] LECUN Y, BENGIO Y, HINTON G. Deep learning[J]. Nature, 2015, 521(7553): 436-444.
[14] [14] KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks[J]. Communications of the ACM, 2017, 60(6): 84-90.
[15] [15] SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[EB/OL]. (2015-04-10)[2020-02-12].https://arxiv.org/pdf/1409.1556.pdf.2014.
[16] [16] HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas: IEEE, 2016: 770-778.
[17] [17] ZHANG H M, LI L, QIAO K, et al. Image prediction for limited-angle tomography via deep learning with convolutional neural network[EB/OL]. (2016-07-29)[2020-02-13].https://arxiv.org/ftp/arxiv/papers/1607/1607.08707.pdf.2016.
[19] [19] ZEILER M D, FERGUS R. Visualizing and understanding convolutional networks[C]//Computer Vision-ECCV 2014, Berlin:Springer, 2014:818-833.
Get Citation
Copy Citation Text
Wang Ming, Xiang Peng, Qi Jianmin, She Guojin, Wei Wei, Wang Yihong. Reconstruction for Tunable Diode Laser Absorption Tomography Based on Convolutional Neural Networks[J]. APPLIED LASER, 2021, 41(4): 890
Received: Oct. 12, 2020
Accepted: --
Published Online: Jan. 10, 2022
The Author Email: Ming Wang (jsnjwm@sina.com)