Journal of Synthetic Crystals, Volume. 53, Issue 5, 803(2024)

First-Principles Study of Lead-Free Quaternary Thioiodides with Outstanding Optoelectronic Properties for Solar Cells

WANG Leilei, YIN Zhenhua, ZHANG Yunke, LIU Lei, and CHEN Ming*
Author Affiliations
  • [in Chinese]
  • show less
    References(48)

    [1] [1] HE R F, ZHOU F F, QU J L, et al. Research progress of metal-organic frameworks in organic perovskite solar cells[J]. Chinese Journal of Luminescence, 2021, 42(11): 1722-1738 (in Chinese).

    [2] [2] WANG C K, LU C W, OUYANG Y J, et al. Optimization and numerical simulation of Sn-based CH3NH3SnI3 perovskite solar cell[J]. Journal of Synthetic Crystals, 2023, 52(11): 2076-2084 (in Chinese).

    [3] [3] SCHIERMEIER Q, TOLLEFSON J, SCULLY T, et al. Electricity without carbon[J]. Nature, 2008, 454: 816-824.

    [4] [4] LEE M M, TEUSCHER J, MIYASAKA T, et al. Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites[J]. Science, 2012, 338(6107): 643-647.

    [5] [5] KIM H S, LEE C R, IM J H, et al. Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%[J]. Scientific reports, 2012, 2(1): 591.

    [6] [6] GREEN M A, HO-BAILLIE A, SNAITH H J. The emergence of perovskite solar cells[J]. Nature Photonics, 2014, 8(7): 506-514.

    [7] [7] GRATZEL M. The light and shade of perovskite solar cells[J]. Nature Materials, 2014, 13(9): 838-842.

    [8] [8] YIN W J, SHI T, YAN Y. Unique properties of halide perovskites as possible origins of the superior solar cell performance[J]. Advanced Materials, 2014, 26(27): 4653-4658.

    [9] [9] YIN W J, YANG J H, KANG J, et al. Halide perovskite materials for solar cells: a theoretical review[J]. Journal of Materials Chemistry A, 2015, 3(17): 8926-8942.

    [10] [10] XIAO Z, YAN Y. Progress in theoretical study of metal halide perovskite solar cell materials[J]. Advanced Energy Materials, 2017, 7(22): 1701136.

    [11] [11] NOH J H, IM S H, HEO J H, et al. Chemical management for colorful, efficient, and stable inorganic-organic hybrid nanostructured solar cells[J]. Nano Letters, 2013, 13(4): 1764-1769.

    [12] [12] NIU G, LI W, MENG F, et al. Study on the stability of CH3NH3PbI3 films and the effect of post-modification by aluminum oxide in all-solid-state hybrid solar cells[J]. Journal of Materials Chemistry A, 2014, 2(3): 705-710.

    [13] [13] MA B, GAO R, WANG L, et al. Alternating assembly structure of the same dye and modification material in quasi-solid state dye-sensitized solar cell[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2009, 202(1): 33-38.

    [14] [14] LI W, LI J, WANG L, et al. Post modification of perovskite sensitized solar cells by aluminum oxide for enhanced performance[J]. Journal of Materials Chemistry A, 2013, 1(38): 11735-11740.

    [15] [15] FROST J M, BUTLER K T, BRIVIO F, et al. Atomistic origins of high-performance in hybrid halide perovskite solar cells[J]. Nano letters, 2014, 14(5): 2584-2590.

    [16] [16] XIAO Z, SONG Z, YAN Y. From lead halide perovskites to lead-free metal halide perovskites and perovskite derivatives[J]. Advanced Materials, 2019, 31(47): 1803792.

    [17] [17] WANG L, MIAO Q, WANG D, et al. 14.31% power conversion efficiency of Sn-based perovskite solar cells via efficient reduction of Sn4+[J]. Angewandte Chemie, 2023, 135(33): e202307228.

    [18] [18] KIM H, LEE Y H, LYU T, et al. Boosting the performance and stability of quasi-two-dimensional tin-based perovskite solar cells using the formamidinium thiocyanate additive[J]. Journal of Materials Chemistry A, 2018, 6(37): 18173-18182.

    [19] [19] LEE L C, HUQ T N, MACMANUS-DRISCOLL J L, et al. Research Update: Bismuth-based perovskite-inspired photovoltaic materials[J]. APL Materials, 2018, 6(8): 084502.

    [20] [20] CATES N, BERNECHEA M. Research Update: Bismuth based materials for photovoltaics[J]. APL Materials, 2018, 6(8): 5026541.

    [21] [21] ZHANG L, WANG K, ZOU B. Bismuth halide perovskite-like materials: current opportunities and challenges[J]. ChemSusChem, 2019, 12(8): 1612-1630.

    [22] [22] BRANDT R E, POINDEXTER J R, GORAI P, et al. Searching for “defect-tolerant” photovoltaic materials: combined theoretical and experimental screening[J]. Chemistry of Materials, 2017, 29(11): 4667-4674.

    [23] [23] HOYE R L Z, LEE L C, KURCHIN R C, et al. Strongly enhanced photovoltaic performance and defect physics of air-stable bismuth oxyiodide (BiOI)[J]. Advanced Materials, 2017, 29(36): 1702176.

    [24] [24] BRANDT R E, STEVANOVIC' V, GINLEY D S, et al. Identifying defect-tolerant semiconductors with high minority-carrier lifetimes: beyond hybrid lead halide perovskites[J]. Mrs Communications, 2015, 5(2): 265-275.

    [25] [25] GANOSE A M, CUFF M, BUTLER K T, et al. Interplay of orbital and relativistic effects in bismuth oxyhalides: BiOF, BiOCl, BiOBr, and BiOI[J]. Chemistry of materials, 2016, 28(7): 1980-1984.

    [26] [26] BHACHU D S, MONIZ S J A, SATHASIVAM S, et al. Bismuth oxyhalides: synthesis, structure and photoelectrochemical activity[J]. Chemical Science, 2016, 7(8): 4832-4841.

    [27] [27] UMARI P, MOSCONI E, DE ANGELIS F. Relativistic GW calculations on CH3NH3PbI3 and CH3NH3SnI3 perovskites for solar cell applications[J]. Scientific reports, 2014, 4: 4467.

    [28] [28] STOUMPOS C C, FRAZER L, CLARK D J, et al. Hybrid germanium iodide perovskite semiconductors: active lone pairs, structural distortions, direct and indirect energy gaps, and strong nonlinear optical properties[J]. Journal of the American Chemical Society, 2015, 137(21): 6804-6819.

    [29] [29] CHANG J H, DOERT T, RUCK M. Structural variety of defect perovskite variants M3E2X9 (M=Rb, Tl, E=Bi, Sb, X=Br, I)[J]. Zeitschrift Für Anorganische Und Allgemeine Chemie, 2016, 642(13): 736-748.

    [30] [30] SUN Y Y, SHI J, LIAN J, et al. Discovering lead-free perovskite solar materials with a split-anion approach[J]. Nanoscale, 2016, 8(12): 6284-6289.

    [31] [31] ZHOU J, RONG X, MOLOKEEV M S, et al. Exploring the transposition effects on the electronic and optical properties of Cs2AgSbCl6 via a combined computational-experimental approach[J]. Journal of Materials Chemistry A, 2018, 6(5): 2346-2352.

    [32] [32] NIE R, YUN H S, PAIK M J, et al. Efficient solar cells based on light-harvesting antimony sulfoiodide[J]. Advanced Energy Materials, 2018, 8(7): 1701901.

    [33] [33] GANOSE A M, BUTLER K T, WALSH A, et al. Relativistic electronic structure and band alignment of BiSI and BiSeI: candidate photovoltaic materials[J]. Journal of Materials Chemistry A, 2016, 4(6): 2060-2068.

    [34] [34] NIE R, IM J, SEOK S I. Efficient solar cells employing light-harvesting Sb0.67 Bi0.33SI[J]. Advanced Materials, 2019, 31(18): 1808344.

    [35] [35] NIE R, MEHTA A, PARK B W, et al. Mixed sulfur and iodide-based lead-free perovskite solar cells[J]. Journal of the American Chemical Society, 2018, 140(3): 872-875.

    [36] [36] ISLAM S M, MALLIAKAS C D, SARMA D, et al. Direct gap semiconductors Pb2BiS2I3, Sn2BiS2I3, and Sn2BiSI5[J]. Chemistry of Materials, 2016, 28(20): 7332-7343.

    [37] [37] STAROSTA V I, KROUTIL J, BENES L. Preparation and fundamental physical properties of Sn2SbS2I3 and Pb2SbS2I3 compounds[J]. Crystal Research and Technology, 1990, 25(12): 1439-1442.

    [38] [38] DOLGIKH V A. Preparation of single crystals and dielectric properties of Sn2SbS2I3 and Pb2SbS2I3[J]. Izvestiya Akademii Nauk SSSR, Neorganicheskie Materialy, 1985, 21(7): 1215-18.

    [39] [39] KAVANAGH S R, SAVORY C N, SCANLON D O, et al. Hidden spontaneous polarisation in the chalcohalide photovoltaic absorber Sn2SbS2I3[J]. Materials Horizons, 2021, 8(10): 2709-2716.

    [40] [40] KOHN W, SHAM L J. Self-consistent equations including exchange and correlation effects[J]. Physical Review, 1965, 140(4A): A1133.

    [41] [41] BLOCHL P E. Projector augmented-wave method[J]. Physical review B, 1994, 50(24): 17953.

    [42] [42] PERDEW J P, BURKE K, ERNZERHOF M. Generalized gradient approximation made simple[J]. Physical review letters, 1996, 77(18): 3865.

    [43] [43] GRIMME S, ANTONY J, EHRLICH S, et al. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu[J]. The Journal of chemical physics, 2010, 132(15).

    [44] [44] GRIMME S, EHRLICH S, GOERIGK L. Effect of the damping function in dispersion corrected density functional theory[J]. Journal of computational chemistry, 2011, 32(7): 1456-1465.

    [45] [45] HEYD J, SCUSERIA G E, ERNZERHOF M. Hybrid functionals based on a screened Coulomb potential[J]. The Journal of Chemical Physics, 2003, 118(18): 8207-8215.

    [46] [46] MAINTZ S, DERINGER V L, TCHOUGREEFF A L, et al. LOBSTER: A tool to extract chemical bonding from plane-wave based DFT[J]. Journal of Computational Chemistry, 2016, 37(11): 1030-1035.

    [47] [47] DERINGER V L, TCHOUGREEFF A L, DRONSKOWSKI R. Crystal orbital Hamilton population (COHP) analysis as projected from plane-wave basis sets[J]. The Journal of Physical Chemistry A, 2011, 115(21): 5461-5466.

    [48] [48] YU L, KOKENYESI R S, KESZLER D A, et al. Inverse design of high absorption thin-film photovoltaic materials[J]. Advanced Energy Materials, 2013, 3(1): 43-48.

    Tools

    Get Citation

    Copy Citation Text

    WANG Leilei, YIN Zhenhua, ZHANG Yunke, LIU Lei, CHEN Ming. First-Principles Study of Lead-Free Quaternary Thioiodides with Outstanding Optoelectronic Properties for Solar Cells[J]. Journal of Synthetic Crystals, 2024, 53(5): 803

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Jan. 8, 2024

    Accepted: --

    Published Online: Aug. 22, 2024

    The Author Email: CHEN Ming (mingchen@sxu.edu.cn)

    DOI:

    CSTR:32186.14.

    Topics