Journal of Synthetic Crystals, Volume. 52, Issue 6, 1145(2023)

Synthesis, Characterization and Catalytic Properties of Copper Based Complexes Guided by Ligands

ZHANG Yin1 and YU Weidong2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    References(22)

    [2] [2] ZHANG J W, HUANG Y C, LI G, et al. Recent advances in alkoxylation chemistry of polyoxometalates: from synthetic strategies, structural overviews to functional applications[J]. Coordination Chemistry Reviews, 2019, 378: 395-414.

    [4] [4] GENG K S, YANG X Q, ZHAO Y J, et al. Efficient strategy for investigating the third-order nonlinear optical (NLO) properties of solid-state coordination polymers[J]. Inorganic Chemistry, 2022, 61(31): 12386-12395.

    [6] [6] ECKSHTAIN-LEVI M, BATTY C J, LIFSHITS L M, et al. Metal-organic coordination polymer for delivery of a subunit broadly acting influenza vaccine[J]. ACS Applied Materials & Interfaces, 2022, 14(25): 28548-28558.

    [7] [7] SUN Y, JIN Y G, XU C, et al. The increasing number of electron reservoirs in nonporous, high-conducting coordination polymers Cux BHT (x=3, 4, and 5, BHT=benzenehexathiol) for improved faradaic capacitance[J]. Small, 2022, 18(30): e2203702.

    [8] [8] KARMAKAR A, POMBEIRO A J L. Recent advances in amide functionalized metal organic frameworks for heterogeneous catalytic applications[J]. Coordination Chemistry Reviews, 2019, 395: 86-129.

    [9] [9] ASGHARNEJAD L, ABBASI A, NAJAFI M, et al. One-, two- and three-dimensional coordination polymers based on copper paddle-wheel SBUs as selective catalysts for benzyl alcohol oxidation[J]. Journal of Solid State Chemistry, 2019, 277: 187-194.

    [10] [10] HUANG Y B, WANG Q, LIANG J, et al. Soluble metal-nanoparticle-decorated porous coordination polymers for the homogenization of heterogeneous catalysis[J]. Journal of the American Chemical Society, 2016, 138(32): 10104-10107.

    [11] [11] PAUL A, ZANGRANDO E, PATRA A, et al. Tetranuclear and 1D polymeric Cd(II) complexes with a tetrapyridyl imidazolidine ligand: synthesis, structure, and fluorescence sensing activity[J]. Cryst Growth Des, 2020, 20(5): 2904-2913.

    [12] [12] SUTRADHAR M, ALEGRIA E C, BARMAN T R, et al. 1D copper(II)-aroylhydrazone coordination polymers: magnetic properties and microwave assisted oxidation of a secondary alcohol[J]. Frontiers in Chemistry, 2020, 8:157

    [13] [13] MA P T, HU F, WANG J P, et al. Carboxylate covalently modified polyoxometalates: from synthesis, structural diversity to applications[J]. Coordination Chemistry Reviews, 2019, 378: 281-309.

    [14] [14] ANYUSHIN A V, KONDINSKI A, PARAC-VOGT T N. Hybrid polyoxometalates as post-functionalization platforms: from fundamentals to emerging applications[J]. Chemical Society Reviews, 2020, 49(2): 382-432.

    [18] [18] LIU G C, HAN S W, GAO Y, et al. Multifunctional fluorescence responses of phenyl-amide-bridged d10 coordination polymers structurally regulated by dicarboxylates and metal ions[J]. CrystEngComm, 2020, 22(45): 7952-7961.

    [19] [19] LIU G C, ZHAO J, LIANG S, et al. Ten polytorsional-amide-induced helical-based coordination polymers with difunctional electrochemical activities[J]. CrystEngComm, 2021, 23(5): 1263-1271.

    [20] [20] MA J X, XU N, LIU Y, et al. A stable 3D Zn-coordination polymer sensor based on dual luminescent ligands for efficient detection of multiple analytes under acid or alkaline environment[J]. Inorganic Chemistry, 2020, 59(20): 15495-15503.

    [21] [21] KAMAL A, RAMAKRISHNA G, RAJU P, et al. Synthesis and anticancer activity of oxindole derived imidazo[1, 5-a]pyrazines[J]. European Journal of Medicinal Chemistry, 2011, 46(6): 2427-2435.

    [22] [22] VODAK D T, BRAUN M E, KIM J, et al. Metal-organic frameworks constructed from pentagonal antiprismatic and cuboctahedral secondary building units[J]. Chemical Communications, 2001(24): 2534-2535.

    [23] [23] JUSZCZAK M, DAS S, KOSISKA A, et al. Piano-stool ruthenium(ii) complexes with maleimide and phosphine or phosphite ligands: synthesis and activity against normal and cancer cells[J]. Dalton Transactions, 2023, 52(13): 4237-4250.

    [24] [24] ANDERSON S N, ELSBERG J G D, BERREAU L M. Light-induced O2-dependent aliphatic carbon-carbon (C-C) bond cleavage in bipyridine-ligated Co(ii) chlorodiketonate complexes[J]. Dalton Transactions, 2023, 52(13): 4152-4160.

    [25] [25] WANG Y, KONG X P, XU W, et al. Ratio-controlled precursors of Anderson-Evans polyoxometalates: synthesis, structural transformation, and magnetic and catalytic properties of a series of triol ligand-decorated {M2Mo6} clusters (M=Cu2+, Co2+, Ni2+, Zn2+)[J]. Inorganic Chemistry, 2018, 57(7): 3731-3741.

    [26] [26] LIU C G, JIANG M X, SU Z M. Computational study on M1/POM single-atom catalysts (M=Cu, Zn, Ag, and Au; POM =[PW12O40]3-): metal-support interactions and catalytic cycle for alkene epoxidation[J]. Inorganic Chemistry, 2017, 56(17): 10496-10504.

    [27] [27] HAN M D, NIU Y J, WAN R, et al. A crown-shaped Ru-substituted arsenotungstate for selective oxidation of sulfides with hydrogen peroxide[J]. Chemistry, 2018, 24(43): 11059-11066.

    Tools

    Get Citation

    Copy Citation Text

    ZHANG Yin, YU Weidong. Synthesis, Characterization and Catalytic Properties of Copper Based Complexes Guided by Ligands[J]. Journal of Synthetic Crystals, 2023, 52(6): 1145

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Dec. 29, 2022

    Accepted: --

    Published Online: Aug. 13, 2023

    The Author Email:

    DOI:

    CSTR:32186.14.

    Topics