Laser & Optoelectronics Progress, Volume. 62, Issue 9, 0900009(2025)

Progress of 3‒5 μm Optical Parametric Oscillation and Amplification Technology in Mid-Infrared Based on ZGP Crystal

Yukun Zhu, Jinsheng Liu, Lailin Ji, Xianghe Guan, Jiaqi Zhang, Yong Cui, Xiaohui Zhao, Zhan Sui, and Yanqi Gao*
Author Affiliations
  • Shanghai Institute of Laser Plasma, China Academy of Engineering Physics, Shanghai 201800, China
  • show less
    Figures & Tables(21)
    Fundamental absorption features (plotted as spectral line intensities) of 11 molecular gases[4]
    Schematic diagrams of different types of nonlinear frequency down-conversion[32]
    Schematic diagrams of DRO and SRO[36]
    Experimental setup of the 161 W ZGP OPO & OPA system pumped by the Ho∶YAG MOPA system[51]. (a) Two-stage amplifier Ho∶YAG MOPA system dual-end-pumped by Tm∶YLF lasers; (b) ZGP OPO & OPA cascade system
    Experimental setup of the 103.9 W ZGP OPO & OPA system pumped by the Ho∶YAG MOPA system[54]. (a) Ho∶YAG oscillator; (b) first-stage amplifier; (c) second-stage amplifier; (d) ZGP OPO; (e) ZGP OPA
    Experimental setup of the 71 mJ ZGP OPO & OPA system pumped by Ho∶YAG MOPA system[55]
    Experimental setup of the 200 mJ ZGP OPO & OPA system pumped by Ho∶YLF laser[59]
    Experimental setup of the modulated peak output power of 99 W of ZGP OPO at 25% duty cycle[60]
    Parameter relationship curves of ZGP crystal under different conditions[61].(a) Calculated effective parametric gain length versus pump beam radius for ZGP crystals of different lengths; (b) calculated coupling coefficient versus propagation distance in ZGP crystal for different pump beams radii
    Experimental setup diagram of ZGP OPO with high conversion efficiency of 75.7%[61]
    Experimental setup of 6.5 W ZGP OPO pumped by Tm3+ doped single oscillator fiber laser[64]
    Experimental setup of high conversion efficiency ZGP OPO pumped by holmium doped all fiber MOPA[68]. (a) Fiber MOPA with three amplification stages; (b) V-shaped cavity ZGP OPO
    Experimental setup of ZGP OPO pumped by Tm3+∶Ho3+ codoped fiber laser[71]. (a) Tm3+∶Ho3+ codoped fiber laser system; (b) ZGP OPO
    Experimental setup of ZGP OPO pumped by Tm∶YLF solid laser[75]
    Experimental setup of high beam quality FIRE cavity ZGP OPO pumped by Ho3+∶LLF MOPA[86]
    Experimental setup of high beam quality RISTRA ZGP OPO pumped by Ho3+∶LLF MOPA[87]
    • Table 1. Summary of characteristics of commonly used nonlinear crystal

      View table

      Table 1. Summary of characteristics of commonly used nonlinear crystal

      CrystalTransmitting range /μmdeff /(pm·V-1Damage threshold /(MW·cm-2
      ZnGeP20.74‒12.0d36=75.00100(2.100 μm, 10 ns)
      CdSiP20.52‒9.0d36=84.5041(1.064 μm, 8 ns)
      AgGaS20.47‒13.0d36=13.0034(1.060 μm, 15 ns)
      AgGaSe20.71‒19.0d36=39.500.025(1.060 μm, 10 ns)
      GaSe0.62‒20.0d22=54.4030(1.060 μm, 10 ns)
      CdSe0.75‒25.0d31=18.0050(2.360 μm, 35 ns)
      BaGa4S70.35‒13.7d31=5.10264(1.060 μm, 14 ns)
      BaGa4Se70.47‒18.0d23=14.20100(1.060 μm, 14 ns)
      LiInS20.34‒13.2d31=7.7040(1.060 μm, 14 ns)
      LiInSe20.45‒15.0d31=11.7840(1.060 μm, 10 ns)
      KTiOPO40.35‒4.5d32=3.701.3(1.060 μm, 10 ns)
      KTiOAsO40.35‒4.0d24=2.400.6(1.060 μm, 10 ns)
      PPLN0.33‒5.5d33=27.20200(1.064 μm, 10 ns)
      MgO∶PPLN0.36‒5.0d13=14.80600 (1.064 nm,9 ns)
      PPKTP0.28‒4.5d33=16.80900(1.064 μm, 5 ns)
      OP-GaP0.50‒12.0d14=70.60>104(2.090 μm, 12 ns)
      OP-GaAs0.86‒18.0d14=94.00>38(2.090 μm, 50 ns)
    • Table 2. Research progress of ZGP mid-infrared laser with high power

      View table

      Table 2. Research progress of ZGP mid-infrared laser with high power

      Pump sourceParametric processOutput power /WYearRef.
      Ho∶YAG laserLinear cavity OPO5.1200656
      Ho∶YAG laserV-shaped cavity OPO22.0201057
      Ho∶YAG laserLinear cavity OPO27.0201360
      Ho∶YAG MOPAOPO & OPA cascade102.0201850
      Ho∶YAG MOPARing cavity OPO110.0201849
      Ho∶YAG MOPAOPO & OPA cascade161.0202151
      Ho∶YAG MOPARing cavity OPO151.0202353
    • Table 3. Research progress of ZGP mid-infrared laser with high energy

      View table

      Table 3. Research progress of ZGP mid-infrared laser with high energy

      Pump sourceParametric processPulse energy /mJYearRef.
      KTP & KTA MOPAOPA33200858
      Ho∶YLF laserOPO & OPA cascade>200201459
      Ho∶YAG MOPAOPO & OPA cascade52202454
      Ho∶YAG MOPAOPO & OPA cascade71202455
    • Table 4. Research progress of miniaturized, integrated ZGP mid-infrared laser

      View table

      Table 4. Research progress of miniaturized, integrated ZGP mid-infrared laser

      Pump sourceParametric processOutput power /WYearRef.
      Tm3+fiberOPO0.658200863
      Tm3+fiberOPO6.500201564
      Tm3+fiberOPO3.910202165
      Tm3+fiber MOPAOPO3.000201266
      Tm3+fiber MOPAOPO1.120201467
      Tm3+&Ho3+fiber MOPAOPO3.000202168
      Ho3+&Tm3+fiber MOPAOPO8.100202369
      Tm3+∶Ho3+ codoped fiber laserOPO8.100201970
      Tm3+∶Ho3+ codoped fiber laserOPO12.200202471
      Tm∶YLF solid laserOPO17.800202374
      Tm∶YLF solid laserOPO3.640202375
    • Table 5. Research progress of high beam quality ZGP mid-infrared laser

      View table

      Table 5. Research progress of high beam quality ZGP mid-infrared laser

      Pump sourceParametric processOutput power/WM2YearRef.
      Ho3+∶YLF laserFIRE OPO0.120/0.013>10/~1201684
      Ho3+∶LLF MOPAFIRE OPO0.329~1.5201785
      Ho3+∶LLF MOPAFIRE OPO0.032<1.5201886
      Ho3+∶LLF MOPARISTRA OPO251.8202187
      Ho3+∶YAG laserLinear OPO14.1<4202488
    Tools

    Get Citation

    Copy Citation Text

    Yukun Zhu, Jinsheng Liu, Lailin Ji, Xianghe Guan, Jiaqi Zhang, Yong Cui, Xiaohui Zhao, Zhan Sui, Yanqi Gao. Progress of 3‒5 μm Optical Parametric Oscillation and Amplification Technology in Mid-Infrared Based on ZGP Crystal[J]. Laser & Optoelectronics Progress, 2025, 62(9): 0900009

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Reviews

    Received: Jan. 3, 2025

    Accepted: Feb. 12, 2025

    Published Online: May. 7, 2025

    The Author Email: Yanqi Gao (liufenggyq@siom.ac.cn)

    DOI:10.3788/LOP250438

    CSTR:32186.14.LOP250438

    Topics