Laser & Optoelectronics Progress, Volume. 57, Issue 15, 153302(2020)

Characteristic Reverse Algorithm Based on Multi-Illuminants Printer

Yan Zhao, Yang Xu*, Cheng Gao, and Changjun Li
Author Affiliations
  • School of Computer and Software Engineering, University of Science and Technology, Anshan, Liaoning 114051, China
  • show less
    Figures & Tables(6)
    Three-level Cellular Neugebauer model
    • Table 1. Eight primary colors, ink combinations, reflectance, and Demchel equations for the Neugebauer model

      View table

      Table 1. Eight primary colors, ink combinations, reflectance, and Demchel equations for the Neugebauer model

      Primaryc,m,yReflectanceDemchel equation
      White(0,0,0)R1(λ)a1=(1-c)(1-m)(1-y)
      Cyan(1,0,0)R2(λ)a2=c(1-m)(1-y)
      Magenta(0,1,0)R3(λ)a3=(1-c)m(1-y)
      Yellow(0,0,1)R4(λ)a4=(1-c)(1-m)y
      Red(0,1,1)R5(λ)a5=(1-c)my
      Green(1,0,1)R6(λ)a6=c(1-m)y
      Blue(1,1,0)R7(λ)a7=cm(1-y)
      Black(1,1,1)R8(λ)a8=cmy
    • Table 2. Comparison of five algorithms iterative multiplications

      View table

      Table 2. Comparison of five algorithms iterative multiplications

      Method4-ink iterative multiplications per iteration
      UGM1 = 4 [8(vector evaluation)+ 16×L(matrix×vector)+ 2×L(inner product)+1]
      Urban-SVDM2= 4 [8(vector evaluation)+ 16×16(matrix×vector)+ 2×16(inner product)+1]
      LL-QRM3 = 4 [8(vector evaluation)+ (16×17)/2(matrix×vector)+ 2×16(inner product)+1]
      TSV-basedM4 = 4 [8(vector evaluation)+ 16×3(matrix×vector)+ 2×3(inner product)+1]
      ML-mixM5 = 4 [8(vector evaluation)+ 16×6(matrix×vector)+ 2×6(inner product)+1]
    • Table 3. Forward spectral prediction model color difference and spectral root mean square error

      View table

      Table 3. Forward spectral prediction model color difference and spectral root mean square error

      ModelPaperLevelΔED50,AveΔED50,MaxΔED50,MedΔRAve
      cmyUnknown51.40978.08320.81480.0551
      90.96146.21150.61540.0338
      cmykart50.73332.45630.66090.0260
      hm51.00106.32530.74450.0217
    • Table 4. When n=3, comparison results of color difference, spectral root mean square error, and metameric index for each source of 5-level and 9-level CYNSN model

      View table

      Table 4. When n=3, comparison results of color difference, spectral root mean square error, and metameric index for each source of 5-level and 9-level CYNSN model

      LevelMethodΔEAveΔRAveMMIA,D50MMIF11,D50MMID65,D50
      D50D65AF11
      LL-QR0.51300.53280.46220.54190.02280.13140.17540.0645
      D500.32710.34610.35620.40830.02500.13040.17330.0650
      5D50D650.33010.34300.37160.42050.02540.12960.17480.0648
      D50A0.36950.39310.34050.40420.02420.12850.17250.0616
      D65A0.36750.38670.35530.41310.02480.12910.17440.0616
      D50D65A0.34380.36300.36900.42820.02510.12920.17470.0632
      LL-QR0.29520.3140.25620.29030.01510.08860.11940.0435
      D500.16760.19190.19750.23450.01710.10060.14050.0500
      9D50D650.16260.18000.20960.23940.01720.10350.14410.0517
      D50A0.20460.22670.18270.21500.01650.10270.13550.0480
      D65A0.19720.21620.19130.21720.01660.10170.13680.0473
      D50D65A0.17130.19080.20030.23300.01700.10180.13770.0488
    • Table 5. When n=3, comparison results of color difference, spectral root mean square error, and metameric index for each source of 5-level CYNSN model with two papers

      View table

      Table 5. When n=3, comparison results of color difference, spectral root mean square error, and metameric index for each source of 5-level CYNSN model with two papers

      LevelPaperMethodΔEAveΔRAveMMIA,D50MMIF11,D50MMID65,D50
      D50D65AF11
      5LL-QR0.73780.76430.68670.90730.02520.21400.41050.0885
      D500.65010.70470.85541.08930.03840.38430.62000.1474
      artD50D650.66440.69150.85691.08200.03620.34930.57920.1338
      D50A0.64750.70210.63780.85400.03100.28690.49930.1112
      D65A0.64970.69350.68010.88470.03070.27410.47820.1079
      D50D65A0.61230.63690.70550.90830.02940.24690.46060.1006
      LL-QR0.88830.88930.87391.02630.02250.23070.52280.0942
      D500.91420.94750.98641.17430.03250.40680.74090.1458
      hmD50D650.90110.91780.98801.16530.03160.39260.72410.1391
      D50A0.84170.88690.77460.97830.02710.33600.67720.1195
      D65A0.87770.90440.83791.02740.02640.32030.65280.1132
      D50D65A0.84440.86850.87031.06310.02690.32350.66100.1156
    Tools

    Get Citation

    Copy Citation Text

    Yan Zhao, Yang Xu, Cheng Gao, Changjun Li. Characteristic Reverse Algorithm Based on Multi-Illuminants Printer[J]. Laser & Optoelectronics Progress, 2020, 57(15): 153302

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Vision, Color, and Visual Optics

    Received: Oct. 25, 2019

    Accepted: Nov. 29, 2019

    Published Online: Aug. 4, 2020

    The Author Email: Yang Xu (xuyang_1981@aliyun.com)

    DOI:10.3788/LOP57.153302

    Topics