Chinese Journal of Lasers, Volume. 47, Issue 9, 902002(2020)
Microstructure and Crack Propagation Characteristics of SUS301L-HT Laser-MAG Hybrid-Welded Joint
[1] Chen F, Xu G L. Research on stainless steel metro carbodies[J]. Rolling Stock, 45, 28-30(2007).
[2] Bo X T. Development trend of stainless steels[J]. Heat Treatment, 22, 5-9(2007).
[3] Ding C G, Shi C Y, Du B G et al. Study on spot welding process of stainless steel SUS301L[J]. Hot Working Technology, 35, 28-29(2006).
[4] Wang R, Ma M J, Chen W L et al. Welding technology, microstructure and mechanical properties of SUS301L stainless steel lap welded joint by cold metal transfer technology[J]. Electric Welding Machine, 47, 53-57(2017).
[5] Zhang Y, Gu X Y, Zhu L J et al. Microstructure characteristics and hardness distribution of pulsed laser welded SUS301L stainless steel sheet joint[J]. Transactions of Materials and Heat Treatment, 37, 55-60(2016).
[9] Liang W J, Han X H, Zheng Z Q et al. Fatigue damage behavior of SUS301L stainless steel laser welding joint[J]. Ordnance Material Science and Engineering, 41, 84-88(2018).
[10] Zhu G R, Chen S, Li M M. Study on fatigue performance of stainless steel non-penetration laser lap welding of SUS301L stainless steel body[J]. Transactions of the China Welding Institution, 37, 14-18(2016).
[11] Chen R, Jiang P, Shao X Y et al. Analysis of crack tip transformation zone in austenitic stainless steel laser-MIG hybrid welded joint[J]. Materials Characterization, 132, 260-268(2017).
[13] Lu F G, Li X B, Li Z G et al. Formation and influence mechanism of keyhole-induced porosity in deep-penetration laser welding based on 3D transient modeling[J]. International Journal of Heat and Mass Transfer, 90, 1143-1152(2015).
[14] Tucker J D, Nolan T K, Martin A J et al. Effect of travel speed and beam focus on porosity in alloy 690 laser welds[J]. Journal of the Minerals, Metals and Materials Society, 64, 1409-1417(2012).
[15] Gey N, Petit B, Humbert M. Electron backscattered diffraction study of ε/α' martensitic variants induced by plastic deformation in 304 stainless steel[J]. Metallurgical and Materials Transactions A, 36, 3291-3299(2005).
[16] Zhao L, Tian Z L, Peng Y. Porosity and nitrogen content of weld metal in laser welding of high nitrogen austenitic stainless steel[J]. ISIJ International, 47, 1772-1775(2007).
[17] Kou S[M]. Welding metallurgy(2003).
[18] Wessman S. Evaluation of the WRC 1992 diagram using computational thermodynamics[J]. Welding in the World, 57, 305-313(2013).
[19] Martelo D F, Mateo A M, Chapetti M D. Fatigue crack growth of a metastable austenitic stainless steel[J]. International Journal of Fatigue, 80, 406-416(2015).
[20] Zhao Y, Wang J, Gao Q. Density evolution of the surface short fatigue cracks of 1Cr18Ni9Ti pipe-weld metal[J]. Journal of Materials Science & Technology, 18, 266-270(2009).
[21] Levinson A J, Rowenhorst D J, Lewis A C. Quantification of microstructural evolution in grain boundary networks[J]. Journal of the Minerals, Metals and Materials Society, 66, 774-779(2014).
[22] Shigeaki K, Ryosuke K, Tadao W. Control of grain boundary connectivity based on fractal analysis for improvement of intergranular corrosion resistance in SUS316L austenitic stainless steel[J]. Acta Materialia, 102, 397-405(2016).
Get Citation
Copy Citation Text
Wu Xiangyang, Zhao Xu, Chen Hui, Zhang Zhiyi. Microstructure and Crack Propagation Characteristics of SUS301L-HT Laser-MAG Hybrid-Welded Joint[J]. Chinese Journal of Lasers, 2020, 47(9): 902002
Category: laser manufacturing
Received: Feb. 28, 2020
Accepted: --
Published Online: Sep. 16, 2020
The Author Email: Hui Chen (xnrpt@swjtu.edu.cn)