Infrared Technology, Volume. 47, Issue 5, 601(2025)

Hyperspectral Anomaly Detection Based on Local Contrast and Multidirectional Gradients

Li WU1,2, Xingchen XU1,2, Yian WANG3, Jiahong REN1, Jiajia ZHANG4, Dong ZHAO1,2, and Xinlei WANG1,2、*
Author Affiliations
  • 1School of Electronics and Information Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China
  • 2School of Electronics and Information Engineering, Wuxi University, Wuxi 214105, China
  • 3School of Electronics and Information Engineering, Xi'an Shiyou University, Xi'an 710071, China
  • 4School of Physics, Xi'an University of Electronic Science and Technology, Xi'an 710071, China
  • show less
    References(25)

    [2] [2] XU Y, ZHANG L, DU B, et al. Hyperspectral anomaly detection based on machine learning: an overview[J].IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2022,15: 3351-3364.

    [5] [5] SONG X, LING Z, WU L, et al. Hyperspectral image anomaly detection based on background reconstruction[J].Journal of System Simulation, 2020,32(7): 1287-1293.

    [6] [6] XIANG P, SONG J, QIN H, et al. Visual attention and background subtraction with adaptive weight for hyperspectral anomaly detection[J].IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021,14: 2270-2283.

    [7] [7] ZHAO D, Asano Y, GU L, et al. City-scale distance sensing via bispectral light extinction in bad weather[J].Remote Sensing, 2020,12(9): 1401.

    [8] [8] ZHAO D, ZHOU L, LI Y, et al. Visibility estimation via near-infrared bispectral real-time imaging in bad weather[J].Infrared Physics & Technology, 2024,136: 105008.

    [9] [9] ZHANG J, XU X, YAN W, et al. Hyperspectral anomaly detection based on local contrast estimation and sub-block background estimation[J].Infrared Physics & Technology, 2023,135: 104966.

    [10] [10] Reed I S, YU X. Adaptive multiple-band CFAR detection of an optical pattern with unknown spectral distribution[J].IEEE Transactions on Acoustics, Speech, and Signal Processing, 1990,38(10): 1760-1770.

    [11] [11] Molero J M, Garzon E M, Garcia I, et al. Analysis and optimizations of global and local versions of the RX algorithm for anomaly detection in hyperspectral data[J].IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2013,6(2): 801-814.

    [12] [12] GUO Q, ZHANG B, RAN Q, et al. Weighted-RXD and linear filter-based RXD: Improving background statistics estimation for anomaly detection in hyperspectral imagery[J].IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2014,7(6): 2351-2366.

    [13] [13] Kwon H, Nasrabadi N M. Kernel RX-algorithm: A nonlinear anomaly detector for hyperspectral imagery[J].IEEE Transactions on Geoscience and Remote Sensing, 2005,43(2): 388-397.

    [14] [14] LIU G, LIN Z, YAN S, et al. Robust recovery of subspace structures by low-rank representation[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012,35(1): 171-184.

    [15] [15] LI S, WANG W, QI H, et al. Low-rank tensor decomposition based anomaly detection for hyperspectral imagery[C]//2015IEEE International Conference on Image Processing(ICIP).IEEE, 2015: 4525-4529.

    [16] [16] LI W, DU Q. Collaborative representation for hyperspectral anomaly detection[J].IEEE Transactions on Geoscience and Remote Sensing, 2014,53(3): 1463-1474.

    [17] [17] CHEN Y, Nasrabadi N M, Tran T D. Sparse representation for target detection in hyperspectral imagery[J].IEEE Journal of Selected Topics in Signal Processing, 2011,5(3): 629-640.

    [18] [18] WEI J, ZHANG J, XU Y, et al. Hyperspectral anomaly detection based on graph regularized variational autoencoder[J].IEEE Geosci. Remote Sens. Lett., 2022,19: 1-5.

    [19] [19] Banks M S, Read J C A, Allison R S, et al. Stereoscopy and the human visual system[J].SMPTE Motion Imaging Journal, 2012,121(4): 24-43.

    [20] [20] XIE W, FAN S, QU J, et al. Spectral distribution-aware estimation network for hyperspectral anomaly detection[J].IEEE Transactions on Geoscience and Remote Sensing, 2021,60: 1-12.

    [21] [21] XU Y, WU Z, LI J, et al. Anomaly detection in hyperspectral images based on low-rank and sparse representation[J].IEEE Transactions on Geoscience and Remote Sensing, 2015,54(4): 1990-2000.

    [22] [22] ZHANG Y, DU B, ZHANG L, et al. A low-rank and sparse matrix decomposition-based Mahalanobis distance method for hyperspectral anomaly detection[J].IEEE Transactions on Geoscience and Remote Sensing, 2015,54(3): 1376-1389.

    [23] [23] CHENG T, WANG B. Graph and total variation regularized low-rank representation for hyperspectral anomaly detection[J].IEEE Transactions on Geoscience and Remote Sensing, 2019,58(1): 391-406.

    [24] [24] GUO T, HE L, LUO F, et al. Anomaly detection of hyperspectral image with hierarchical anti-noise mutual-incoherence-induced low-rank representation[J].IEEE Transactions on Geoscience and Remote Sensing, 2023,61: 1-13.

    [25] [25] Tu B, Li N, Liao Z, et al. Hyperspectral anomaly detection via spatial density background purification[J].Remote Sensing, 2019, 11(22): 2618.

    [26] [26] Song S, Zhou H, Yang Y, et al. Hyperspectral anomaly detection via convolutional neural network and low rank with density-based clustering[J].IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2019, 12(9): 3637-3649.

    [27] [27] Xiang P, Ali S, Jung S K, et al. Hyperspectral anomaly detection with guided autoencoder[J].IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 1-18.

    [28] [28] Arisoy S, Nasrabadi N M, Kayabol K. Unsupervised pixel-wise hyperspectral anomaly detection via autoencoding adversarial networks[J].IEEE Geoscience and Remote Sensing Letters, 2021, 19: 1-5.

    Tools

    Get Citation

    Copy Citation Text

    WU Li, XU Xingchen, WANG Yian, REN Jiahong, ZHANG Jiajia, ZHAO Dong, WANG Xinlei. Hyperspectral Anomaly Detection Based on Local Contrast and Multidirectional Gradients[J]. Infrared Technology, 2025, 47(5): 601

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Apr. 28, 2024

    Accepted: Jul. 3, 2025

    Published Online: Jul. 3, 2025

    The Author Email: WANG Xinlei (wangxinlei@cwxu.edu.cn)

    DOI:

    Topics