Laser & Optoelectronics Progress, Volume. 60, Issue 5, 0500005(2023)
Development Trend of In-Vehicle Networks and Research Progress of In-Vehicle Optical Fiber Transmission
[5] Peng Y H, Jiang M, Ma Z Y et al. Review on development of key technology for autonomous vehicle[J]. Journal of Fuzhou University (Natural Science Edition), 49, 691-703(2021).
[6] Zhou Z F, Lee J, Berger M S et al. Simulating TSN traffic scheduling and shaping for future automotive Ethernet[J]. Journal of Communications and Networks, 23, 53-62(2021).
[7] Cui M Y, Huang H Y, Xu Q et al. Survey of intelligent and connected vehicle technologies: Architectures, functions and applications[J]. Journal of Tsinghua University (Science and Technology), 62, 493-508(2022).
[8] Zhou S, Zhang G, Yi R et al. Research on vehicle adaptive real-time positioning based on binocular vision[J]. IEEE Intelligent Transportation Systems Magazine, 14, 47-59(2021).
[9] Liu S S, Tang J, Zhang Z et al. Computer architectures for autonomous driving[J]. Computer, 50, 18-25(2017).
[14] Lin Y C, Lian F L. Data reduction and bandwidth allocation for video-based network system[C], 116-121(2012).
[15] Xiong X L, Wang J, Liu K et al. Lidar slant-range visibility retrieval method based on effect of multiple scattering[J]. Laser & Optoelectronics Progress, 59, 0429001(2022).
[16] Zamanakos G, Tsochatzidis L, Amanatiadis A et al. A comprehensive survey of LIDAR-based 3D object detection methods with deep learning for autonomous driving[J]. Computers & Graphics, 99, 153-181(2021).
[26] Balal N, Pinhasi G A, Pinhasi Y. Atmospheric and fog effects on ultra-wide band radar operating at extremely high frequencies[J]. Sensors, 16, 751(2016).
[27] Zhao P J, Lu C X, Wang J N et al. Human tracking and identification through a millimeter wave radar[J]. Ad Hoc Networks, 116, 102475(2021).
[28] Li X, Tao X W, Zhu B et al. Research on a simulation method of the millimeter wave radar virtual test environment for intelligent driving[J]. Sensors, 20, 1929(2020).
[36] Ogle T L, Blair W D, Slocumb B J et al. Assessment of hierarchical multi-sensor multi-target track fusion in the presence of large sensor biases[C](2019).
[37] Gogineni S. Multi-sensor fusion and sensor calibration for autonomous vehicles[J]. International Research Journal of Engineering and Technology (IRJET), 7, 1073-1078(2018).
[38] Shahian Jahromi B, Tulabandhula T, Cetin S. Real-time hybrid multi-sensor fusion framework for perception in autonomous vehicles[J]. Sensors, 19, 4357(2019).
[39] Pantel L, Wolf L C. On the impact of delay on real-time multiplayer games[C], 23-29(2002).
[40] Yeong D J, Velasco-Hernandez G, Barry J et al. Sensor and sensor fusion technology in autonomous vehicles: a review[J]. Sensors, 21, 2140(2021).
[41] Huang J, Zhao M L, Zhou Y D et al. In-vehicle networking: protocols, challenges, and solutions[J]. IEEE Network, 33, 92-98(2019).
[42] Gong Y J, Gong H L, Zhang C. Research on the development strategy of the internet of vehicles[C](2021).
[43] Rumez M, Grimm D, Kriesten R et al. An overview of automotive service-oriented architectures and implications for security countermeasures[J]. IEEE Access, 8, 221852-221870(2020).
[44] Alparslan O, Arakawa S, Murata M. Next generation intra-vehicle backbone network architectures[C](2021).
[45] Liu C H, Liu G X[M]. Detailed explanation of vehicle network technology, 100-203(2019).
[48] Yu T, Wang X. Topology verification enabled intrusion detection for in-vehicle CAN-FD networks[J]. IEEE Communications Letters, 24, 227-230(2020).
[55] Kibler T, Poferl S, Bock G et al. Optical data buses for automotive applications[J]. Journal of Lightwave Technology, 22, 2184-2199(2004).
[56] Kong D P, Zhang D M, Yuan Y et al. Progress in research and applications of plastic optical fiber[J]. Acta Photonica Sinica, 48, 1148006(2019).
[57] Wieckowski M, Jensen J B, Tafur Monroy I et al. 300 Mbps transmission with 4.6 bit/s/Hz spectral efficiency over 50 m PMMA POF link using RC-LED and multilevel Carrierless Amplitude Phase modulation[C](2011).
[58] Karabetsos S, Pikasis E, Nikas T et al. DFT-spread DMT modulation for 1-Gb/s transmission rate over 100 m of 1-mm SI-POF[J]. IEEE Photonics Technology Letters, 24, 836-838(2012).
[59] Pikasis E, Karabetsos S, Nikas T et al. Comparison of CAP and DFT-spread DMT for high speed transmission over 50m SI-POF[C](2016).
[60] Loquai S, Winkler F, Kruglov R et al. 26.75 Gb/s short-reach transmission over up to 15 m of large-core PMMA polymer optical fiber for next-generation 100 GbE[C](2013).
[61] Loquai S, Kruglov R, Winkler F et al. 42-Gb/s transmission over large-core 1-mm PMMA graded-index polymer optical fiber[J]. IEEE Photonics Technology Letters, 25, 602-605(2013).
[62] Loquai S, Kruglov R, Schmauss B et al. Comparison of modulation schemes for 10.7 Gb/s transmission over large-core 1 mm PMMA polymer optical fiber[J]. Journal of Lightwave Technology, 31, 2170-2176(2013).
[63] Gimeno C, Guerrero E, Sánchez-Azqueta C et al. Multi-rate adaptive equalizer for transmission over up to 50-m SI-POF[J]. IEEE Photonics Technology Letters, 29, 587-590(2017).
[64] López A, Ángeles Losada M, Mateo J et al. Transmission performance of plastic optical fibers designed for avionics platforms[J]. Journal of Lightwave Technology, 36, 5082-5088(2018).
[65] Yahav I, Sheffi N, Biofcic Y et al. Multi-gigabit spatial-division multiplexing transmission over multicore plastic optical fiber[J]. Journal of Lightwave Technology, 39, 2296-2304(2021).
[66] Chen Y, Li J L, Liu H L et al. Multiattribute switching algorithm for outdoor visible light communication in vehicle networking[J]. Chinese Journal of Lasers, 48, 1706004(2021).
Get Citation
Copy Citation Text
Weijie Sheng, Jinyun Chen, Yasi Wang, Lin Sun, Yi Cai, Gangxiang Shen, Ning Liu. Development Trend of In-Vehicle Networks and Research Progress of In-Vehicle Optical Fiber Transmission[J]. Laser & Optoelectronics Progress, 2023, 60(5): 0500005
Category: Reviews
Received: Feb. 8, 2022
Accepted: Mar. 17, 2022
Published Online: Mar. 16, 2023
The Author Email: Ning Liu (gordonnliu@suda.edu.cn)