Acta Laser Biology Sinica, Volume. 30, Issue 4, 289(2021)

Research Progress in the Mechanism of Ferroptosis and Its Role in Renal Related Diseases

SUN Jiabin, YUE Minghao, LIU Zan, XIA Shunyao, and XIU Youcheng*
Author Affiliations
  • [in Chinese]
  • show less
    References(50)

    [1] [1] KHAN I, YOUSIF A, CHENSNOKOV M, et al. A decade of cell death studies: breathing new life into necroptosis[J]. Pharmacology & Therapeutics, 2020, 11(1): 107717.

    [2] [2] Chen J, Yang X, Fang X, et al. The role of ferroptosis in chronic diseases[J]. Journal of Zhejiang University (Medical Sciences), 2020, 49(1): 44-57.

    [3] [3] Dolma S, Lessnick S L, Hahn W C, et al. Identification of genotype-selective antitumor agents using synthetic lethal chemical screening in engineered human tumells[J]. Cancer Cell, 2003, 285(6):?285-296.

    [4] [4] YAGODA N, VON RECHENBERG M, ZAGANJOR E, et al. RAS-RAF-MEK-dependent oxidative cell death involving voltage-dependent anion channels[J]. Nature, 2007, 447(7146): 864-868.

    [5] [5] CHEN X, YU C, KANG R, et al. Iron metabolism in ferroptosis[J]. Frontiers in Cell and Developmental Biology, 2020, 8: 590226.

    [6] [6] DIXON S, LEMBERG K, LAMPRECHT M, et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death[J]. Cell, 2012, 149(5): 1060-1072.

    [7] [7] YANG W S, STOCKWELL B R. Synthetic lethal screening identifies compounds activating iron-dependent, nonapoptotic cell death in oncogenic-RAS-harboring cancer cells[J]. Chemistry & Biology, 2008, 15(3): 234-245.

    [8] [8] ALVAREZ S W, SVIDERSKIY V O, TERZI E M, et al. NFS1 undergoes positive selection in lung tumours and protects cells from ferroptosis[J]. Nature, 2017, 551(7682): 639-643.

    [9] [9] FANG X, WANG H, HAN D, et al. Ferroptosis as a target for protection against cardiomyopathy[J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(7): 2672-2680.?

    [10] [10] CHANG L C, CHIANG S K, CHEN S E, et al. Heme oxygenase-1 mediates BAY 11-7085 induced ferroptosis[J]. Cancer Letters, 2018, 416: 124-137.

    [11] [11] IMAI H, MATSUOKA M, KUMAGAI T, et al. Lipid peroxidation-dependent cell death regulated by GPX4 and ferroptosis[J]. Current Topics in Microbiology and Immunology, 2017, 403: 143-170.?

    [12] [12] MIOTTO G, ROSSETTO M, ROVERI A, et al. Insight into the mechanism of ferroptosis inhibition by ferrostatin-1[J]. Redox Biology, 2020, 28: 101328.

    [13] [13] YANG W, SRIRAMARATNAM R, WELSCH M, et al. Regulation of ferroptotic cancer cell death by GPX4[J]. Cell, 2014, 156(1/2): 317-331.

    [14] [14] GASCHLER M M, ANDIA A A, LIU H, et al. FINO2 initiates ferroptosis through GPX4 inactivation and iron oxidation[J]. Nature Chemical Biology, 2018, 14(5): 507-515.

    [15] [15] TANG D, KROEMER G. Ferroptosis[J]. Current Biology, 2020, 30(21): R1292-R1297.

    [16] [16] YAN B, AI Y, SUN Q, et al. Membrane damage during ferrop0tosis is caused by oxidation of phospholipids catalyzed by the oxidoreductases por and cyb5r1[J]. Molecular Cell, 2020, 81(2): 355-369.

    [17] [17] DOLL S, PRONETH B, TYURINA Y Y, et al. ACSL4 dictates ferroptosis sensitivity by shaping cellular lipid composition[J]. Nature Chemical Biology, 2016, 13(1): 91-98.

    [18] [18] LIU Y, TAVANA O, GU W, et al. P53 modifications: exquisite decorations of the powerful guardian[J]. Journal of Molecular Cell Biology, 2019, 11(7): 564-577.

    [19] [19] WANG L, LIU Y, DU T, et al. ATF3 promotes ferroptosis by suppressing system xc-[J]. Chinese Journal of Pharmacology and Toxicology, 2020, 27(2): 662-675.?

    [20] [20] KANG R, ZHU S, ZEH H J, et al. BECN1 is a new driver of ferroptosis[J]. Autophagy, 2018, 14(12): 2173-2175.

    [21] [21] KON N, OU Y, WANG S J, et al. mTOR inhibition acts as an unexpected checkpoint in p53-mediated tumor suppression[J]. Genes & Development, 2021, 35(1/2): 59-64.

    [22] [22] JIANG L, KON N, LI T, et al. Ferroptosis as a p53-mediated activity during tumour suppression[J]. Nature, 2015, 520(7545): 57-62.

    [23] [23] CHU B, KON N, CHEN D, et al. Alox12 is required for p53-mediated tumour suppression through a distinct ferroptosis pathway[J]. Nature Cell Biology, 2019, 21(5): 579-591.

    [24] [24] TARANGELO A, MAGTANONG L, BIEGING-ROLETT K T, et al. P53 suppresses metabolic stress-induced ferroptosis in cancer cells[J]. Cell Reports, 22(3): 569-575.

    [25] [25] XIE Y, ZHU S, SONG X, et al. The tumor suppressor p53 limits ferroptosis by blocking DPP4 activity[J]. Cell Reports,?2017, 20(7): 1692-1704.

    [26] [26] MAZURE N M. Vdac in cancer[J]. Biochimica et Biophysica Acta-Bioenergetics,?2017, 1858(8): 665-673.

    [27] [27] DOLL S, FREITAS F P, SHAH R, et al. FSP1 is a glutathione-independent ferroptosis suppressor[J]. Nature, 2019, 575(7784): 693-698.

    [28] [28] YI J, ZHU J, WU J, et al. Oncogenic activation of PI3K-AKT-mTOR signaling suppresses ferroptosis via SREBP-mediated lipogenesis[J]. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(49): 31189-31197.

    [29] [29] LI J, CAO F, YIN H L, et al. Ferroptosis: past, present and future[J]. Cell Death & Disease, 2020, 11(2): 88-91.

    [31] [31] SIEGEL R L, MILLER K D, JEMAL A. Cancer statistics[J]. CA: A Cancer Journal for Clinicians, 2019, 69(1): 7-34.

    [32] [32] ZOU Y, PALTE M J, DEIK A A, et al. A GPX4-dependent cancer cell state underlies the clear-cell morphology and confers sensitivity toferroptosis[J]. Nature Communications, 2019, 10(1): 1617.

    [33] [33] MIESS H, DANKWORTH B, GOUW A M, et al. The glutathione redox system is essential to prevent ferroptosis caused by impaired lipid metabolism in clear cell renal cell carcinoma[J]. Oncogene, 2018, 37(40): 5435-5450.

    [34] [34] MOU Y, WU J, ZHANG Y, et al. Low expression of ferritinophagy-related NCOA4 gene in relation to unfavorable outcome and defective immune cells infiltration in clear cell renal carcinoma[J]. BMC Cancer, 2021, 21(1): 18.

    [35] [35] SLEZAKOVA S, RUDA-KUCEROVA J. Anticancer activity of artemisinin and its derivatives[J]. Anticancer Research, 2017, 37(11): 5995-6003.

    [36] [36] MARKOWITSCH S D, SCHUPP P, LAUCKNER J, et al. Artesunate inhibits growth of sunitinib-resistant renal cell carcinoma cells through cell cycle arrest and induction of ferroptosis[J]. Cancers, 2020, 12(11): 3150.

    [37] [37] OOI A. Advances in hereditary leiomyomatosis and renal cell carcinoma (HLRCC) research[J]. Seminars Cancer Biology, 2020, 61: 158-166.

    [38] [38] MICHAEL J. Ironing out roles and regulation of NRF2 in a hereditary cancer syndrome[J]. Seminars in Cancer Biology, 2019, 109(9): 2757-2766.

    [39] [39] BOONPHENG B, THONGPRAYOON C, WIJARNPREECHA K, et al. Outcomes of patients with autosomal dominant polysytic kidney disease on peritoneal dialysis: a meta-analysis[J]. American Journal of Kidney Diseases the Official Journal of the National Kidney Foundation, 2018, 24(6): 638-646.

    [40] [40] SCHREIBER R, BUCHHOLZ B, KRAUS A, et al. Lipid peroxidation drives renal cyst growth in vitro through activation of TMEM16A[J]. Journal of the American Society of Nephrology Jasn, 2019, 30(2): 228-242.?

    [41] [41] ZUK A, BONVENTRE J V. Recent advances in acute kidney injury and its consequences and impact on chronic kidney disease[J]. Current Opinion in Nephrology and Hypertension, 2019, 28(4): 397-405.

    [42] [42] FRIEDMANN ANGELI J P, SCHNEIDER M, PRONETH B, et al. Inactivation of the ferroptosis regulator Gpx4 triggers acute renal failure in mice[J]. Free Radical Biology & Medicine, 2014, 76(12): 1180-1191.

    [43] [43] WENZEL S E, TYURINA Y Y, ZHAO J, et al. PEBP1 wardens ferroptosis by enabling lipoxygenase generation of lipid death signals[J]. Cell, 2017, 171(3): 628-641.

    [44] [44] MARTIN-SANCHEZ D, RUIZ-ANDRES O, POVEDA J, et al. Ferroptosis, but not necroptosis, is important in nephrotoxic folic acid-induced aki[J]. Journal of the American Society of Nephrology Jasn, 2016, 28(1): 218-229.

    [45] [45] ZHANG J, BI J, REN Y, et al. Involvement of GPX4 in irisin’s protection against isch emia reperfusion-induced acute kidney injury[J]. Journal of Cellular Physiology, 2021, 236(2): 931-945.?

    [46] [46] HU Z, ZHANG H, YI B, et al. VDR activation attenuate cisplatin induced AKI by inhibiting ferroptosis[J]. Cell Death & Disease, 2020, 11(1): 73.

    [48] [48] GUPTA P, VENUGOPAL S K. Augmenter of liver regeneration: a key protein in liver regeneration and pathophysiology[J]. Hepatology Research, 2018, 48(8): 587-596.

    [49] [49] HUANG L L, LIAO X H, SUN H, et al. Augmenter of liver regeneration protects the kidney from ischaemia-reperfusion injury in ferroptosis[J]. Journal of Cellular and Molecular Medicine, 2019, 23(6): 4153-4164.

    [50] [50] DING C, DING X, ZHENG J, et al. MiR-182-5p and miR-378a-3p regulate ferroptosis in I/R-induced renal injury[J]. Cell Death & Disease, 2020, 11(10): 929.

    [51] [51] ZHAO Z, WU J, XU H, et al. XJB-5-131 inhibited ferroptosis in tubular epithelial cells after ischemiareperfusion injury[J]. Cell Death & Disease, 2020, 11(8): 629.

    [52] [52] LUO M, WU L, ZHANG K, et al. MiR-137 regulates ferroptosis by targeting glutamine transporter SLC1A5 in melanoma[J]. Cell Death & Differentiation, 2018, 25(8): 1457-1472.

    Tools

    Get Citation

    Copy Citation Text

    SUN Jiabin, YUE Minghao, LIU Zan, XIA Shunyao, XIU Youcheng. Research Progress in the Mechanism of Ferroptosis and Its Role in Renal Related Diseases[J]. Acta Laser Biology Sinica, 2021, 30(4): 289

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Feb. 4, 2021

    Accepted: --

    Published Online: Sep. 12, 2021

    The Author Email: Youcheng XIU (248124360@qq.com)

    DOI:10.3969/j.issn.1007-7146.2021.04.001

    Topics