Chinese Journal of Lasers, Volume. 47, Issue 2, 207009(2020)
Quantitative Fluorescence Resonance Energy Transfer Measurement Based on Spectral Unmixing
[1] Cario G, Franck J. Über zerlegung von Wasserstoffmolekülen durch angeregte Quecksilberatome[J]. Zeitschrift für Physik, 11, 161-166(1922).
[2] Förster T. Zwischenmolekulare energiewanderung und fluoreszenz[J]. Annalen Der Physik, 437, 55-75(1948).
[3] Fábián Á I, Rente T, Szöllösi J et al. Strength in numbers: effects of acceptor abundance on FRET efficiency[J]. ChemPhysChem, 11, 3713-3721(2010).
[4] Stryer L. Fluorescence energy transfer as a spectroscopic ruler[J]. Annual Review of Biochemistry, 47, 819-846(1978).
[6] Kraynov V S, Chamberlain C, Bokoch G M et al. Localized Rac activation dynamics visualized in living cells[J]. Science, 290, 333-337(2000).
[7] Mochizuki N, Brusslan J A, Larkin R et al. Arabidopsis genomes uncoupled 5 (GUN5) mutant reveals the involvement of Mg-chelatase H subunit in plastid-to-nucleus signal transduction[J]. Proceedings of the National Academy of Sciences of the United States of America, 98, 2053-2058(2001).
[8] Xu Q, Brecht W J, Weisgraber K H et al. Apolipoprotein E4 domain interaction occurs in living neuronal cells as determined by fluorescence resonance energy transfer[J]. Journal of Biological Chemistry, 279, 25511-25516(2004).
[9] Butz E S, Ben-Johny M, Shen M et al. Quantifying macromolecular interactions in living cells using FRET two-hybrid assays[J]. Nature Protocols, 11, 2470-2498(2016).
[10] Miyawaki A, Llopis J, Heim R et al. Fluorescent indicators for Ca 2+ based on green fluorescent proteins and calmodulin[J]. Nature, 388, 882-887(1997).
[11] Zhang J W, Yang F F, Chai L Y et al. Spectral measurement of acceptor-to-donor extinction coefficient ratio in living cells[J]. Micron, 68, 98-106(2015).
[12] Mochizuki N, Yamashita S, Kurokawa K et al. Spatio-temporal images of growth-factor-induced activation of Ras and Rap1[J]. Nature, 411, 1065-1068(2001).
[13] Verveer P J. Quantitative imaging of lateral ErbB1 receptor signal propagation in the plasma membrane[J]. Science, 290, 1567-1570(2000).
[14] Takemoto K, Nagai T, Miyawaki A et al. Spatio-temporal activation of caspase revealed by indicator that is insensitive to environmental effects[J]. The Journal of Cell Biology, 160, 235-243(2003).
[17] Hou Z X, Wang Y H, Zheng L Q et al. Determination of acceptor-to-donor cross section ratio for two-photon excitation in living cells[J]. Proceedings of SPIE, 10024, 1002428(2016).
[18] He Y S, Pan C G, Cao H X et al. Highly sensitive and selective dual-emission ratiometric fluorescence detection of dopamine based on carbon dots-gold nanoclusters hybrid[J]. Sensors and Actuators B: Chemical, 265, 371-377(2018).
[19] Patowary S, Alvarez-Curto E, Xu T R et al. The muscarinic M3 acetylcholine receptor exists as two differently sized complexes at the plasma membrane[J]. Biochemical Journal, 452, 303-312(2013).
[20] Pisterzi L F, Jansma D B, Georgiou J et al. Oligomeric size of the M2 muscarinic receptor in live cells as determined by quantitative fluorescence resonance energy transfer[J]. Journal of Biological Chemistry, 285, 16723-16738(2010).
[21] Mishra A K, Gragg M, Stoneman M R et al. Quaternary structures of opsin in live cells revealed by FRET spectrometry[J]. Biochemical Journal, 473, 3819-3836(2016).
[22] Singh D R, Mohammad M M, Patowary S et al. Determination of the quaternary structure of a bacterial ATP-binding cassette (ABC) transporter in living cells[J]. Integrative Biology, 5, 312-323(2012).
[24] Dickinson M E, Bearman G, Tille S et al. Multi-spectral imaging and linear unmixing add a whole new dimension to laser scanning fluorescence microscopy[J]. BioTechniques, 31, 1272-1278(2001).
[25] Robert M, Feddersen B A, Enrico G et al. Time-resolved imaging fluorescence microscopy[J]. Proceedings of SPIE, 1640, 448-460(1992).
[27] Zhu J, Deng C, Huang G L et al. Quantitative fluorescence correction incorporating Förster resonance energy transfer and its use for measurement of hybridization efficiency on microarrays[J]. Analytical Chemistry, 81, 1426-1432(2009).
[28] Zhu J, Lu Y, Deng C et al. Assessment of fluorescence resonance energy transfer for two-color DNA microarray platforms[J]. Analytical Chemistry, 82, 5304-5312(2010).
[29] Xie F B, Zhu J, Deng C et al. General and reliable quantitative measurement of fluorescence resonance energy transfer using three fluorescence channels[J]. The Analyst, 137, 1013-1019(2012).
[30] Li Q, Fu R X, Zhang J Q et al. Label-free method using a weighted-phase algorithm to quantitate nanoscale interactions between molecules on DNA microarrays[J]. Analytical Chemistry, 89, 3501-3507(2017).
[31] Schaaf T M, Peterson K C, Grant B D et al. Spectral Unmixing Plate Reader: High-Throughput, High-Precision FRET Assays in Living Cells. SLAS Discovery: Advancing Life Sciences R&D, 22, 250-261(2017).
[32] Arsenovic P T, Mayer C R, Conway D E. SensorFRET: a standardless approach to measuring pixel-based spectral bleed-through and FRET efficiency using spectral imaging[J]. Scientific Reports, 7, 15609(2017).
[33] Raicu V, Jansma D B. Miller R J D, et al. Protein interaction quantified in vivo by spectrally resolved fluorescence resonance energy transfer[J]. Biochemical Journal, 385, 265-277(2005).
[35] Lin F, Du M, Yang F et al. Improved spectrometer-microscope for quantitative fluorescence resonance energy transfer measurement based on simultaneous spectral unmixing of excitation and emission spectra[J]. Journal of Biomedical Optics, 23, 016006(2018).
[36] Scott B L, Hoppe A D. Optimization of FRET microscopy for live-cell imaging of multiple protein-protein interactions[J]. Biophysical Journal, 104, 669a(2013).
[37] Artz A S, van Besien K, Zimmerman T et al. Long-term follow-up of nonmyeloablative allogeneic stem cell transplantation for renal cell carcinoma: The University of Chicago Experience[J]. Bone Marrow Transplantation, 35, 253-260(2005).
[38] Su W H, Du M Y, Lin F R et al. Quantitative FRET measurement based on spectral unmixing of donor, acceptor and spontaneous excitation-emission spectra[J]. Journal of Biophotonics, 12, e201800314(2019).
[40] Du M Y, Yang F F, Mai Z H et al. FRET two-hybrid assay by linearly fitting FRET efficiency to concentration ratio between acceptor and donor[J]. Applied Physics Letters, 112, 153702(2018).
[41] Zipfel W R, Williams R M, Christie R et al. Live tissue intrinsic emission microscopy using multiphoton-excited native fluorescence and second harmonic generation[J]. Proceedings of the National Academy of Sciences of the United States of America, 100, 7075-7080(2003).
[42] Zhang J, Zhang L L, Chai L Y et al. Reliable measurement of the FRET sensitized-quenching transition factor for FRET quantification in living cells[J]. Micron, 88, 7-15(2016).
[45] Zhang J, Li H, Chai L et al. Quantitative FRET measurement using emission-spectral unmixing with independent excitation crosstalk correction[J]. Journal of Microscopy, 257, 104-116(2015).
[46] Ai H, Henderson J N, Remington S J et al. Directed evolution of a monomeric, bright and photostable version of Clavularia cyan fluorescent protein: structural characterization and applications in fluorescence imaging[J]. Biochemical Journal, 400, 531-540(2006).
[48] Elder A, Domin A, Kaminski Schierle G et al. A quantitative protocol for dynamic measurements of protein interactions by Förster resonance energy transfer-sensitized fluorescence emission[J]. Journal of the Royal Society Interface, 6, S59-S81(2009).
[49] Yu H N, Zhang J W, Li H L et al. An empirical quantitative fluorescence resonance energy transfer method for multiple acceptors based on partial acceptor photobleaching[J]. Applied Physics Letters, 100, 253701(2012).
[50] Lakowicz J R. Principles of fluorescence spectroscopy[M]. Boston, MA: Springer(1999).
[51] Hoppe A D, Scott B L, Welliver T P et al. N-way FRET microscopy of multiple protein-protein interactions in live cells[J]. PLoS One, 8, e64760(2013).
[52] Wouters F S, Bastiaens P I, Wirtz K W et al. FRET microscopy demonstrates molecular association of non-specific lipid transfer protein (nsL-TP) with fatty acid oxidation enzymes in peroxisomes[J]. The EMBO Journal, 17, 7179-7189(1998).
[53] Kenworthy A K, Edidin M. Distribution of a glycosylphosphatidylinositol-anchored protein at the apical surface of MDCK cells examined at a resolution of <100 Å using imaging fluorescence resonance energy transfer[J]. The Journal of Cell Biology, 142, 69-84(1998).
[54] Chan Francis K M, Siegel R M, Zacharias D et al. Fluorescence resonance energy transfer analysis of cell surface receptor interactions and signaling using spectral variants of the green fluorescent protein[J]. Cytometry, 44, 361-368(2001).
[55] Kenworthy A K. Imaging protein-protein interactions using fluorescence resonance energy transfer microscopy[J]. Methods, 24, 289-296(2001).
[56] Ecker R C, de Martin R, Steiner G E et al. Application of spectral imaging microscopy in cytomics and fluorescence resonance energy transfer (FRET) analysis[J]. Cytometry, 59A, 172-181(2004).
[57] Mustafa S, Hannagan J, Rigby P et al. Quantitative Förster resonance energy transfer efficiency measurements using simultaneous spectral unmixing of excitation and emission spectra[J]. Journal of Biomedical Optics, 18, 026024(2013).
[58] Erickson M G, Alseikhan B A, Peterson B Z et al. Preassociation of calmodulin with voltage-gated Ca 2+ channels revealed by FRET in single living cells[J]. Neuron, 31, 973-985(2001).
[59] Biskup C, Zimmer T, Kelbauskas L et al. Multi-dimensional fluorescence lifetime and FRET measurements[J]. Microscopy Research and Technique, 70, 442-451(2007).
[60] Lee S R, Sang L J, Yue D T. Uncovering aberrant mutant PKA function with flow cytometric FRET[J]. Cell Reports, 14, 3019-3029(2016).
[61] Zhang C, Lin F, Du M et al. Simultaneous measurement of quantum yield ratio and absorption ratio between acceptor and donor by linearly unmixing excitation-emission spectra[J]. Journal of Microscopy, 270, 335-342(2018).
[62] Lin F, Zhang C, Du M et al. Superior robustness of ExEm-spFRET to IIem-spFRET method in live-cell FRET measurement[J]. Journal of Microscopy, 272, 145-150(2018).
[64] Chai L Y, Zhang J W, Zhang L L et al. Miniature fiber optic spectrometer-based quantitative fluorescence resonance energy transfer measurement in single living cells[J]. Journal of Biomedical Optics, 20, 037008(2015).
[65] Zhang L L, Qin G Q, Chai L Y et al. Spectral wide-field microscopic fluorescence resonance energy transfer imaging in live cells[J]. Journal of Biomedical Optics, 20, 086011(2015).
[66] Zhang C, Liu Y, Sun H et al. Automated E-FRET microscope for dynamical live-cell FRET imaging[J]. Journal of Microscopy, 274, 45-54(2019).
Get Citation
Copy Citation Text
Yin Ao, Chen Tongsheng. Quantitative Fluorescence Resonance Energy Transfer Measurement Based on Spectral Unmixing[J]. Chinese Journal of Lasers, 2020, 47(2): 207009
Category: biomedical photonics and laser medicine
Received: Oct. 8, 2019
Accepted: --
Published Online: Feb. 21, 2020
The Author Email: Tongsheng Chen (chentsh@ scnu.edu.cn)