Chinese Journal of Lasers, Volume. 51, Issue 3, 0307105(2024)
Research Advances of NIR‐
[1] Ci Q Q, Wang Y Y, Wu B et al. Fe-doped carbon dots as NIR-Ⅱ fluorescence probe for in vivo gastric imaging and pH detection[J]. Advanced Science, 10, e2206271(2023).
[2] Chen Y, Wang S F, Zhang F. Near-infrared luminescence high-contrast in vivo biomedical imaging[J]. Nature Reviews Bioengineering, 1, 60-78(2023).
[3] Qin Z J, Ren T B, Zhou H J et al. NIRⅡ-HDs: a versatile platform for developing activatable NIR-Ⅱ fluorogenic probes for reliable in vivo analyte sensing[J]. Angewandte Chemie (International Ed. in English), 61, e202201541(2022).
[4] Li C Y, Chen G C, Zhang Y J et al. Advanced fluorescence imaging technology in the near-infrared-Ⅱ window for biomedical applications[J]. Journal of the American Chemical Society, 142, 14789-14804(2020).
[5] Dang H P, Yan L F. Organic fluorescent nanoparticles with NIR-Ⅱ emission for bioimaging and therapy[J]. Biomedical Materials, 16, 022001(2021).
[6] Cai Y, Si W L, Huang W et al. Organic dye based nanoparticles for cancer phototheranostics[J]. Small, 14, e1704247(2018).
[7] Li B H, Zhao M Y, Zhang F. Rational design of near-infrared-Ⅱ organic molecular dyes for bioimaging and biosensing[J]. ACS Materials Letters, 2, 905-917(2020).
[8] Lei Z H, Sun C X, Pei P et al. Stable, wavelength-tunable fluorescent dyes in the NIR-Ⅱ region for in vivo high-contrast bioimaging and multiplexed biosensing[J]. Angewandte Chemie (International Ed. in English), 58, 8166-8171(2019).
[9] Wang S F, Fan Y, Li D D et al. Anti-quenching NIR-Ⅱ molecular fluorophores for in vivo high-contrast imaging and pH sensing[J]. Nature Communications, 10, 1058(2019).
[10] Wu Y Y, Hu D H, Gao D Y et al. Miniature NIR-Ⅱ nanoprobes for active-targeted phototheranostics of brain tumors[J]. Advanced Healthcare Materials, 11, e2202379(2022).
[11] Wei M, Bai J W, Shen X et al. Glutathione-exhausting nanoprobes for NIR-Ⅱ fluorescence imaging-guided surgery and boosting radiation therapy efficacy via ferroptosis in breast cancer[J]. ACS Nano, 17, 11345-11361(2023).
[12] Liu Y Y, Chen L, Chen Z Y et al. Multifunctional Janus nanoplatform for efficiently synergistic theranostics of rheumatoid arthritis[J]. ACS Nano, 17, 8167-8182(2023).
[13] Tian Y, Chen Z M, Liu S Y et al. “Dual-key-and-lock” NIR-Ⅱ NSCyanines enable high-contrast activatable phototheranostics in extrahepatic diseases[J]. Angewandte Chemie International Edition, 62, e202309768(2023).
[14] Zeng C, Ouyang J, Sun L H et al. An activatable probe for detection and therapy of food-additive-related hepatic injury via NIR-Ⅱ fluorescence/optoacoustic imaging and biomarker-triggered drug release[J]. Analytica Chimica Acta, 1208, 339831(2022).
[15] Ouyang J, Sun L H, Zeng F et al. Rational design of stable heptamethine cyanines and development of a biomarker-activatable probe for detecting acute lung/kidney injuries via NIR-Ⅱ fluorescence imaging[J]. The Analyst, 147, 410-416(2022).
[16] Kvach M V, Ustinov A V, Stepanova I A et al. A convenient synthesis of cyanine dyes: reagents for the labeling of biomolecules[J]. European Journal of Organic Chemistry, 2008, 2107-2117(2008).
[18] Ilina K, Henary M. Cyanine dyes containing quinoline moieties: history, synthesis, optical properties, and applications[J]. Chemistry, 27, 4230-4248(2021).
[19] Li B H, Lu L F, Zhao M Y et al. An efficient 1064 nm NIR-Ⅱ excitation fluorescent molecular dye for deep-tissue high-resolution dynamic bioimaging[J]. Angewandte Chemie International Edition, 57, 7483-7487(2018).
[20] Pan D, Caruthers S D, Chen J J et al. Nanomedicine strategies for molecular targets with MRI and optical imaging[J]. Future Medicinal Chemistry, 2, 471-490(2010).
[21] Yu X M, Feng Z, Cai Z C et al. Deciphering of cerebrovasculatures via ICG-assisted NIR-Ⅱ fluorescence microscopy[J]. Journal of Materials Chemistry B, 7, 6623-6629(2019).
[22] Saremi B, Bandi V, Kazemi S et al. Exploring NIR aza-BODIPY-based polarity sensitive probes with ON-and-OFF fluorescence switching in pluronic nanoparticles[J]. Polymers, 12, 540(2020).
[23] Wei Z W, Yang S, Wu M et al. Recent progress in near-infrared-Ⅱ fluorescence imaging probes for fluorescence surgical navigation[J]. Chinese Journal of Lasers, 49, 0507102(2022).
[24] Hoelzel C A, Zhang X. Visualizing and manipulating biological processes by using HaloTag and SNAP-tag technologies[J]. ChemBioChem, 21, 1935-1946(2020).
[25] Hang Y J, Boryczka J, Wu N Q. Visible-light and near-infrared fluorescence and surface-enhanced Raman scattering point-of-care sensing and bio-imaging: a review[J]. Chemical Society Reviews, 51, 329-375(2022).
[26] Zhu S J, Tian R, Antaris A L et al. Near-infrared-Ⅱ molecular dyes for cancer imaging and surgery[J]. Advanced Materials, 31, e1900321(2019).
[27] Yang Y, Sun C X, Wang S F et al. Counterion-paired bright heptamethine fluorophores with NIR-Ⅱ excitation and emission enable multiplexed biomedical imaging[J]. Angewandte Chemie International Edition, 61, e202117436(2022).
[28] Liu J H, Yang Y Q, Ma R et al. Research progress of organic NIR-Ⅱ fluorescent probes[J]. Chinese Journal of Lasers, 50, 2107101(2023).
[29] Wyler H. Das experiment: papierelektrophorese[J]. Chemie in Unserer Zeit, 3, 111-115(1969).
[30] Musso H. The pigments of fly agaric, Amanita muscaria[J]. Tetrahedron, 35, 2843-2853(1979).
[31] Tyutyulkov N, Fabian J, Mehlhorn A et al[M]. Polymethine dyes: structure and properties(1991).
[32] Hunger K[M]. Industrial dyes: chemistry, properties, applications(2007).
[33] Panigrahi M, Dash S, Patel S et al. Syntheses of cyanines: a review[J]. Tetrahedron, 68, 781-805(2012).
[34] Chapman G, Henary M, Patonay G. The effect of varying short-chain alkyl substitution on the molar absorptivity and quantum yield of cyanine dyes[J]. Analytical Chemistry Insights, 6, 29-36(2011).
[35] Chen X Z, Guo R, Zhao C et al. A novel anti-cancer therapy: CRISPR/Cas9 gene editing[J]. Frontiers in Pharmacology, 13, 939090(2022).
[36] Huang F, Li Y H, Liu J L et al. Intraperitoneal injection of cyanine-based nanomicelles for enhanced near-infrared fluorescence imaging and surgical navigation in abdominal tumors[J]. ACS Applied Bio Materials, 4, 5695-5706(2021).
[37] Jeong C, Uthaman S, Bagheri B et al. Self-assembled heptamethine cyanine dye dimer as a novel theranostic drug delivery carrier for effective image-guided chemo-photothermal cancer therapy[J]. Journal of Controlled Release, 329, 50-62(2021).
[38] Ding B B, Xiao Y L, Zhou H et al. Polymethine thiopyrylium fluorophores with absorption beyond 1000 nm for biological imaging in the second near-infrared subwindow[J]. Journal of Medicinal Chemistry, 62, 2049-2059(2019).
[39] Tsai H C, Tsai C H, Chen W S et al. Safety evaluation of frequent application of microbubble-enhanced focused ultrasound blood-brain-barrier opening[J]. Scientific Reports, 8, 17720(2018).
[40] Liang S M, Hu D H, Li G F et al. NIR-Ⅱ fluorescence visualization of ultrasound-induced blood-brain barrier opening for enhanced photothermal therapy against glioblastoma using indocyanine green microbubbles[J]. Science Bulletin, 67, 2316-2326(2022).
[41] Xue D Z, Cao Y, Wang Y H et al. An efficient reactive oxygen species/reactive nitrogen species generator for dual imaging-guided orthotopic glioblastoma therapy through intrathecal delivery[J]. Nano Today, 50, 101886(2023).
[42] Jeevan R, Cromwell D A, Trivella M et al. Reoperation rates after breast conserving surgery for breast cancer among women in England: retrospective study of hospital episode statistics[J]. British Medical Journal, 345, e4505(2012).
[43] Yang R Q, Wang P Y, Lou K L et al. Biodegradable nanoprobe for NIR-Ⅱ fluorescence image-guided surgery and enhanced breast cancer radiotherapy efficacy[J]. Advanced Science, 9, 2104728(2022).
[44] Zhang X L, Zhao M, Wen L et al. Sequential SPECT and NIR-Ⅱ imaging of tumor and sentinel lymph node metastasis for diagnosis and image-guided surgery[J]. Biomaterials Science, 9, 3069-3075(2021).
[45] Bandi V G, Luciano M P, Saccomano M et al. Targeted multicolor in vivo imaging over 1000 nm enabled by nonamethine cyanines[J]. Nature Methods, 19, 353-358(2022).
[46] Xu J, Kooby D A, Nie S M. Nanofluorophore assisted fluorescence image-guided cancer surgery[J]. Journal of Medical - Clinical Research & Reviews, 2, 1-3(2018).
[47] Li Z Q, Li Z, Ramos A et al. Detection of pancreatic cancer by indocyanine green-assisted fluorescence imaging in the first and second near-infrared windows[J]. Cancer Communications, 41, 1431-1434(2021).
[48] Luo X P, Hu D H, Gao D Y et al. Metabolizable near-infrared-Ⅱ nanoprobes for dynamic imaging of deep-seated tumor-associated macrophages in pancreatic cancer[J]. ACS Nano, 15, 10010-10024(2021).
[49] Hu Z H, Fang C, Li B et al. First-in-human liver-tumour surgery guided by multispectral fluorescence imaging in the visible and near-infrared-Ⅰ/Ⅱ windows[J]. Nature Biomedical Engineering, 4, 259-271(2020).
[50] Zhao M Y, Li B H, Wu Y F et al. A tumor-microenvironment-responsive lanthanide-cyanine FRET sensor for NIR-Ⅱ luminescence-lifetime in situ imaging of hepatocellular carcinoma[J]. Advanced Materials, 32, 2001172(2020).
[51] Feng Z, Yu X M, Jiang M X et al. Excretable IR-820 for in vivo NIR-Ⅱ fluorescence cerebrovascular imaging and photothermal therapy of subcutaneous tumor[J]. Theranostics, 9, 5706-5719(2019).
[52] Siegel R L, Miller K D, Wagle N S et al. Cancer statistics, 2023[J]. CA: A Cancer Journal for Clinicians, 73, 17-48(2023).
[53] Bradley C A, Dunne P D, Bingham V et al. Transcriptional upregulation of c-MET is associated with invasion and tumor budding in colorectal cancer[J]. Oncotarget, 7, 78932-78945(2016).
[54] Hu Z, Li R H, Cui X Y et al. Albumin-based cyanine crizotinib conjugate nanoparticles for NIR-Ⅱ imaging-guided synergistic chemophototherapy[J]. ACS Applied Materials & Interfaces, 15, 33890-33902(2023).
[55] Cui C X, Li J C, Fang J et al. Building multipurpose nano-toolkit by rationally decorating NIR-Ⅱ fluorophore to meet the needs of tumor diagnosis and treatment[J]. Chinese Chemical Letters, 33, 3478-3483(2022).
[56] Coussens L M, Werb Z. Inflammation and cancer[J]. Nature, 420, 860-867(2002).
[57] Vinogradov S, Warren G, Wei X. Macrophages associated with tumors as potential targets and therapeutic intermediates[J]. Nanomedicine, 9, 695-707(2014).
[58] Kang H, Shamim M, Yin X R et al. Tumor-associated immune-cell-mediated tumor-targeting mechanism with NIR-Ⅱ fluorescence imaging[J]. Advanced Materials, 34, 2106500(2022).
[59] Gao D Y, Luo Z C, He Y et al. Low-dose NIR-Ⅱ preclinical bioimaging using liposome-encapsulated cyanine dyes[J]. Small, 19, 2206544(2023).
[60] Pezone A, Olivieri F, Napoli M V et al. Inflammation and DNA damage: cause, effect or both[J]. Nature Reviews Rheumatology, 19, 200-211(2023).
[61] He L, He L H, Xu S et al. Engineering of reversible NIR-Ⅱ redox-responsive fluorescent probes for imaging of inflammation in vivo[J]. Angewandte Chemie International Edition, 61, e202211409(2022).
[62] Liang T, Guo Z, He Y F et al. Cyanine-doped lanthanide metal-organic frameworks for near-infrared Ⅱ bioimaging[J]. Advanced Science, 9, 2104561(2022).
[63] Ma Y, Liu L H, Ye Z F et al. Engineering of cyanine-based nanoplatform with tunable response toward reactive species for ratiometric NIR-Ⅱ fluorescent imaging in mice[J]. Science Bulletin, 68, 2382-2390(2023).
[64] Smolen J S, Aletaha D, Barton A et al. Rheumatoid arthritis[J]. Nature Reviews Disease Primers, 4, 18001(2018).
[65] Xie J W, Huang X Y, Gao M et al. Surgical pharmacy for optimizing medication therapy management services within enhanced recovery after surgery (ERAS®) programs[J]. Journal of Clinical Medicine, 12, 631(2023).
[66] Mittal M, Siddiqui M R, Tran K et al. Reactive oxygen species in inflammation and tissue injury[J]. Antioxidants & Redox Signaling, 20, 1126-1167(2014).
[67] Zhang X, Chen Y, He H S et al. ROS/RNS and base dual activatable merocyanine-based NIR-Ⅱ fluorescent molecular probe for in vivo biosensing[J]. Angewandte Chemie (International Ed. in English), 60, 26337-26341(2021).
[68] Li D D, Wang S F, Lei Z H et al. Peroxynitrite activatable NIR-Ⅱ fluorescent molecular probe for drug-induced hepatotoxicity monitoring[J]. Analytical Chemistry, 91, 4771-4779(2019).
[69] Li J J, Duan Q J, Wei X N et al. Kidney-targeted nanoparticles loaded with the natural antioxidant rosmarinic acid for acute kidney injury treatment[J]. Small, 18, 2204388(2022).
[70] Zeng C, Tan Y Y, Sun L H et al. Renal-clearable probe with water solubility and photostability for biomarker-activatable detection of acute kidney injuries via NIR-Ⅱ fluorescence and optoacoustic imaging[J]. ACS Applied Materials & Interfaces, 15, 17664-17674(2023).
[71] Yang B, Lan S S, Dieudé M et al. Caspase-3 is a pivotal regulator of microvascular rarefaction and renal fibrosis after ischemia-reperfusion injury[J]. Journal of the American Society of Nephrology: JASN, 29, 1900-1916(2018).
[72] Barrett M, Asbun H J, Chien H L et al. Bile duct injury and morbidity following cholecystectomy: a need for improvement[J]. Surgical Endoscopy, 32, 1683-1688(2018).
[73] Wu D, Xue D W, Zhou J et al. Extrahepatic cholangiography in near-infrared Ⅱ window with the clinically approved fluorescence agent indocyanine green: a promising imaging technology for intraoperative diagnosis[J]. Theranostics, 10, 3636-3651(2020).
[74] Sun C L, Wang B Q, Dong B et al. Review: advances in the application of microenvironment-responsive NIR-Ⅱ fluorescent probes in organisms[J]. ECS Journal of Solid State Science and Technology, 10, 076002(2021).
[75] Yang Z M, Mo Q Y, He J M et al. Mitochondrial-targeted and near-infrared fluorescence probe for bioimaging and evaluating monoamine oxidase a activity in hepatic fibrosis[J]. ACS Sensors, 5, 943-951(2020).
[76] Li K, Lyu Y F, Huang Y et al. A de novo strategy to develop NIR precipitating fluorochrome for long-term in situ cell membrane bioimaging[J]. Proceedings of the National Academy of Sciences of the United States of America, 118, e2018033118(2021).
Get Citation
Copy Citation Text
Yu Qiu, Zhiyang Shen, Haizhen Ding, Jinpeng Jing, Hongmin Chen. Research Advances of NIR‐
Category: Biomedical Optical Imaging
Received: Oct. 30, 2023
Accepted: Jan. 11, 2024
Published Online: Feb. 19, 2024
The Author Email: Chen Hongmin (hchen@xmu.edu.cn)
CSTR:32183.14.CJL231338