Chinese Journal of Lasers, Volume. 35, Issue 3, 414(2008)
Wavelength Convertion Based on Cross-Phase Modulation in Microstructure Fibers
[1] [1] S. J. B. Yoo. Wavelength conversion technologies for WDM network applications [J]. J. Lightwave Technol., 1996, 14(6):955~966
[2] [2] T. Tanemura, C. S. Goh, K. Kikuchi et al.. Highly efficient arbitrary wavelength conversion within entire C-band based on nondegenerate fiber four-wave mixing [J]. IEEE Photon. Technol. Lett., 2004, 16(2):551~553
[3] [3] J. J. Yu, P. Jeppesen. 80-Gb/s wavelength conversion based on cross-phase modulation in high-nonlinearity dispersion-shifted fiber and optical filtering [J]. IEEE Photon. Technol. Lett., 2001, 13(8):833~835
[4] [4] C. H. Kwok, S. H. Lee, K. K. Chow et al.. Widely tunable wavelength conversion with extinction ratio enhancement using PCF-based NOLM [J]. IEEE Photon. Technol. Lett., 2005, 17(12):2655~2657
[5] [5] P. A. Andersen, T. Tokle, Y. Geng et al.. Wavelength conversion of a 40-Gb/s RZ-DPSK signal using four-wave mixing in a dispersion-flattened highly nonlinear photonic crystal fiber [J]. IEEE Photon. Technol. Lett., 2005, 17(9):1908~1910
[6] [6] J. C. Knight, T. A. Birks, P. St. J. Russell et al.. All-silica single-mode optical fiber with photonic crystal cladding [J]. Opt. Lett., 1996, 21(19):1547~1549
[7] [7] T. A. Birks, D. Mogilevtsev, J. C. Knight et al.. Dispersion compensation using single material fibers [J]. IEEE Photon. Technol. Lett., 1999, 11(6):674~676
[8] [8] A. Ferrando, E. Silvestre, J. J. Miret et al.. Nearly zero ultraflattened dispersion in photonic crystal fibers [J]. Opt. Lett., 2000, 25(11):790~792
[9] [9] J. C. Knight, J. Arriaga, T. A. Birks et al.. Anomalous dispersion in photonic crystal fiber [J]. IEEE Photon. Technol. Lett., 2000, 12(7):807~809
[12] [12] N. G. R. Broderick, T. M. Monro, P. J. Bennett et al.. Nonlinearity in holey optical fibers: measurement and future opportunities [J]. Opt. Lett., 1999, 24(20):1395~1397
[13] [13] B. Zsigri, C. Peucheret, M. D. Nielsen et al.. Demonstration of broadcast, transmission, and wavelength conversion functionalities using photonic crystal fibers [J]. IEEE Photon. Technol. Lett., 2006, 18(21):2290~2292
[15] [15] J. H. Lee, Z. Yusoff, W. Belardi et al.. A tunable WDM wavelength converter based on cross-phase modulation effects in normal dispersion holey fiber [J]. IEEE Photon. Technol. Lett., 2003, 15(3):437~439
[16] [16] M. Jinno, T. Matsumoto. Nonlinear Sagnac interferometer switch and its applications [J]. IEEE J. Quantum Electron., 1992, 28(4):875~882
[17] [17] M. Jinno. All optical signal regularizing/regeneration using a nonlinear fiber Sagnac interferometer switch with signal-clock walk-off [J]. J. Lightwave Technol., 1994, 12(9):1648~1659
[18] [18] G. P. Agrawal. Nonlinear Fiber Optics [M]. 2nd ed.. Elsevier, 2001. 12, 65
[19] [19] B. E. Olsson, P. Ohlen, L. Rau et al.. A simple and robust 40-Gb/s wavelength converter using fiber cross-phase modulation and optical filtering [J]. IEEE Photon. Technol. Lett., 2000, 12(17):846~848
[20] [20] P. Ohlen, B. E. Olsson, D. J. Blumenthal et al.. Wavelength dependence and power requirements of a wavelength converter based on XPM in a dispersion-shifted optical fiber [J]. IEEE Photon. Technol. Lett., 2000, 12(5):522~524
Get Citation
Copy Citation Text
Wang Zinan, Xu Yongzhao, Zhang Xia, Huang Yongqing, Ren Xiaomin. Wavelength Convertion Based on Cross-Phase Modulation in Microstructure Fibers[J]. Chinese Journal of Lasers, 2008, 35(3): 414