Chinese Journal of Lasers, Volume. 49, Issue 4, 0415001(2022)
High-Power Brillouin Frequency Comb Based on Free-Space Optical Cavity
[1] Fortier T, Baumann E. 20 years of developments in optical frequency comb technology and applications[J]. Communications Physics, 2, 153(2019).
[2] Udem T, Holzwarth R, Hänsch T W. Optical frequency metrology[J]. Nature, 416, 233-237(2002).
[3] Chembo Y K. Kerr optical frequency combs: theory, applications and perspectives[J]. Nanophotonics, 5, 214-230(2016).
[4] Wu G H, Zhou S Y, Yang Y T et al. Dual-comb ranging and its applications[J]. Chinese Journal of Lasers, 48, 1504002(2021).
[5] Yang M Z, Meng F, Lin Y G et al. Research on transfer oscillator technology based on fiber optical frequency comb[J]. Laser & Optoelectronics Progress, 57, 070602(2020).
[6] Kippenberg T J, Holzwarth R, Diddams S A. Microresonator-based optical frequency combs[J]. Science, 332, 555-559(2011).
[7] Cundiff S T, Ye J. Colloquium: femtosecond optical frequency combs[J]. Reviews of Modern Physics, 75, 325(2003).
[8] Bai Z X, Yuan H, Liu Z H et al. Stimulated Brillouin scattering materials, experimental design and applications: a review[J]. Optical Materials, 75, 626-645(2018).
[9] Lu Q Y, Razeghi M, Slivken S et al. High power frequency comb based on mid-infrared quantum cascade laser at λ ~9 μm[J]. Applied Physics Letters, 106, 051105(2015).
[10] Ye J, Schnatz H, Hollberg L W. Optical frequency combs: from frequency metrology to optical phase control[J]. IEEE Journal of Selected Topics in Quantum Electronics, 9, 1041-1058(2003).
[11] Gundavarapu S, Brodnik G M, Puckett M et al. Sub-hertz fundamental linewidth photonic integrated Brillouin laser[J]. Nature Photonics, 13, 60-67(2019).
[12] Eggleton B J, Poulton C G, Rakich P T et al. Brillouin integrated photonics[J]. Nature Photonics, 13, 664-677(2019).
[13] Bai Z X, Williams R J, Kitzler O et al. Diamond Brillouin laser in the visible[J]. APL Photonics, 5, 031301(2020).
[14] Williams R J, Kitzler O, Bai Z X et al. High power diamond Raman lasers[J]. IEEE Journal of Selected Topics in Quantum Electronics, 24, 1602214(2018).
[15] Bai Z, Zhang Z, Wang K et al. Comprehensive thermal analysis of diamond in a high-power Raman cavity based on FVM-FEM coupled method[J]. Nanomaterials, 11, 1572(2021).
[16] Bai Z X, Williams R J, Jasbeer H et al. Large brightness enhancement for quasi-continuous beams by diamond Raman laser conversion[J]. Optics Letters, 43, 563-566(2018).
[17] Rodgers B C, Russell T H, Roh W B. Laser beam combining and cleanup by stimulated Brillouin scattering in a multimode optical fiber[J]. Optics Letters, 24, 1124-1126(1999).
[18] Bai Z X, Yang X Z, Chen H et al. Research progress of high-power diamond laser technology(Invited)[J]. Infrared and Laser Engineering, 49, 20201076(2020).
[19] Li Y L, Ding J, Bai Z X et al. Diamond Raman laser: a promising high-beam-quality and low-thermal-effect laser[J]. High Power Laser Science and Engineering, 9, e35(2021).
[20] Antipov S, Sabella A, Williams R J et al. 1.2 kW quasi-steady-state diamond Raman laser pumped by an M2=15 beam[J]. Optics Letters, 44, 2506-2509(2019).
[21] Granados E, Spence D J, Mildren R P. Deep ultraviolet diamond Raman laser[J]. Optics Express, 19, 10857-10863(2011).
[22] Li Y Q, Bai Z X, Chen H et al. Eye-safe diamond Raman laser[J]. Results in Physics, 16, 102853(2020).
[23] Sabella A, Piper J A, Mildren R P. Diamond Raman laser with continuously tunable output from 3.38 μm to 3.80 μm[J]. Optics Letters, 39, 4037-4040(2014).
Get Citation
Copy Citation Text
Zhenxu Bai, Hui Chen, Jie Ding, Yaoyao Qi, Yulei Wang, Zhiwei Lü. High-Power Brillouin Frequency Comb Based on Free-Space Optical Cavity[J]. Chinese Journal of Lasers, 2022, 49(4): 0415001
Category: Letters
Received: Sep. 16, 2021
Accepted: Nov. 8, 2021
Published Online: Jan. 18, 2022
The Author Email: Bai Zhenxu (zxbai@hebut.edu.cn)