Chinese Journal of Liquid Crystals and Displays, Volume. 36, Issue 1, 8(2021)

Nanoimprinted structures for organic light-emitting devices and lasers

GAO Xiu-min*, LIU Yue-feng, ZHANG Hai-jing, ZHANG Tian-run, BI Yan-gang, YIN Da, and FENG Jing
Author Affiliations
  • [in Chinese]
  • show less
    References(81)

    [1] [1] LIU Y F, AN M H, BI Y G, et al. Flexible efficient top-emitting organic light-emitting devices on a silk substrate [J]. IEEE Photonics Journal, 2017, 9(5): 7000606.

    [2] [2] YIN D, FENG J, MA R, et al. Efficient and mechanically robust stretchable organic light-emitting devices by a laser-programmable buckling process [J]. Nature Communications, 2016, 7: 11573.

    [3] [3] YU M X, HUANG R S, GUO J J, et al. Promising applications of aggregation-induced emission luminogens in organic optoelectronic devices [J]. Photoni X, 2020, 1(1): 11.

    [6] [6] PISIGNANO D, PERSANO L, viSCONTI P, et al. Oligomer-based organic distributed feedback lasers by room-temperature nanoimprint lithography [J]. Applied Physics Letters, 2003, 83(13): 2545-2547.

    [7] [7] YAMASHITA K, TAKEUCHI N, OE K, et al. Simultaneous RGB lasing from a single-chip polymer device [J]. Optics Letters, 2010, 35(14): 2451-2453.

    [8] [8] GRIVAS C, POLLNAU M. Organic solid-state integrated amplifiers and lasers [J]. Laser & Photonics Reviews, 2012, 6(4): 419-462.

    [9] [9] JIANG Y, LIU Y Y, LIU X, et al. Organic solid-state lasers: a materials view and future development [J]. Chemical Society Reviews, 2020, 49(16): 5885-5944.

    [10] [10] XIE G H, DING L M. Triplet manipulation for strong luminescence [J]. Science Bulletin, 2020, 65(21): 1780-1782.

    [11] [11] FUSELLA M A, SARAMAK R, BUSHATI R, et al. Plasmonic enhancement of stability and brightness in organic light-emitting devices [J]. Nature, 2020, 585(7825): 379-382.

    [12] [12] WANG L D, ZHAO Z F, ZHAN G, et al. Deep-blue organic light-emitting diodes based on a d-f transition cerium(Ⅲ) complex with 100% exciton utilization efficiency [J]. Light: Science & Applications, 2020, 9: 157.

    [13] [13] SHIN H J, KIM T W. Ultra-high-image-density, large-size organic light-emitting device panels based on highly reliable gate driver circuits integrated by using InGaZnO thin-film transistors [J]. IEEE Journal of the Electron Devices Society, 2019, 7: 1109-1113.

    [14] [14] CHALESHTORI Z N, ZVANOVEC S, GHASSEMLOOY Z, et al. Coverage of a shopping mall with flexible OLED-based visible light communications [J]. Optics Express, 2020, 28(7): 10015-10026.

    [15] [15] HUANG Y G, HSIANG E L, DENG M Y, et al. Mini-LED, micro-LED and OLED displays: present status and future perspectives [J]. Light: Science & Applications, 2020, 9: 105.

    [16] [16] RAJENDRAN S K, WEI M J, OHADI H, et al. Low threshold polariton lasing from a solution-processed organic semiconductor in a planar microcavity [J]. Advanced Optical Materials, 2019, 7(12): 1801791.

    [17] [17] ZHIZHCHENKO A, SYUBAEV S, BERESTENNIKOV A, et al. Single-mode lasing from imprinted halide-perovskite microdisks [J]. ACS Nano, 2019, 13(4): 4140-4147.

    [18] [18] FENG J, LIU Y F, BI Y G, et al. Light manipulation in organic light-emitting devices by integrating micro/nano patterns [J]. Laser & Photonics Review, 2017, 11(2): 1600145.

    [19] [19] LIU Y F, FENG J, BI Y G, et al. Recent developments in flexible organic light-emitting devices [J]. Advanced Materials Technologies, 2019, 4(1): 1800371.

    [20] [20] YI F S, BI Y G, ZHANG X L, et al. Highly flexible and mechanically robust ultrathin Au grid as electrodes for flexible organic light-emitting devices [J]. IEEE Transactions on Nanotechnology, 2019, 18: 776-780.

    [21] [21] DIELEMAN C D, DING W Y, WU L J, et al. Universal direct patterning of colloidal quantum dots by (extreme) ultraviolet and electron beam lithography [J]. Nanoscale, 2020, 12(20): 11306-11316.

    [22] [22] CHOU S Y, KRAUSS P R, RENSTROM P J. Imprint of sub-25 nm vias and trenches in polymers [J]. Applied Physics Letters, 1995, 67(21): 3114-3116.

    [23] [23] LI X M, CUI J S, BA Q K, et al. Multiphotoluminescence from a triphenylamine derivative and its application in white organic light-emitting diodes based on a single emissive layer [J]. Advanced Materials, 2019, 31(23): 1900613.

    [24] [24] WANG Z H, LI M K, GAN L, et al. Predicting operational stability for organic light-emitting diodes with exciplex cohosts [J]. Advanced Science, 2019, 6(7): 1802246.

    [25] [25] JEON Y, CHOI H R, KWON J H, et al. Sandwich-structure transferable free-form OLEDs for wearable and disposable skin wound photomedicine [J]. Light: Science & Applications, 2019, 8: 114.

    [26] [26] ZHAN T, XIONG J H, ZOU J Y, et al. Multifocal displays: review and prospect [J]. PhotoniX, 2020, 1(1): 10.

    [27] [27] PARK I J, KIM T I, YOON T, et al. Flexible and transparent graphene electrode architecture with selective defect decoration for organic light-emitting diodes [J]. Advanced Functional Materials, 2018, 28(10): 1704435.

    [28] [28] SONG J, KIM K H, KIM E, et al. Lensfree OLEDs with over 50% external quantum efficiency via external scattering and horizontally oriented emitters [J]. Nature Communications, 2018, 9: 3207.

    [29] [29] LI Y G, KOVA I M, WESTPHALEN J, et al. Tailor-made nanostructures bridging chaos and order for highly efficient white organic light-emitting diodes [J]. Nature Communications, 2019, 10: 2972.

    [30] [30] GIM S, LEE I, PARK J Y, et al. Spontaneously embedded scattering structures in a flexible substrate for light extraction [J]. Small, 2017, 13(23): 1604168.

    [31] [31] BI Y G, FENG J, LI Y F, et al. Broadband light extraction from white organic light-emitting devices by employing corrugated metallic electrodes with dual periodicity [J]. Advanced Materials, 2013, 25(48): 6969-6974.

    [33] [33] JIN Y, FENG J, ZHANG X L, et al. Solving efficiency-stability tradeoff in top-emitting organic light-emitting devices by employing periodically corrugated metallic cathode [J]. Advanced Materials, 2012, 24(9): 1187-1191.

    [34] [34] WANG J, SUN X Y, CHEN L, et al. Direct nanoimprint of submicron organic light-emitting structures [J]. Applied Physics Letters, 1999, 75(18): 2767-2769.

    [35] [35] LUO Y, WANG C H, WANG L, et al. Flexible organic light-emitting diodes with enhanced light out-coupling efficiency fabricated on a double-sided nanotextured substrate [J]. ACS Applied Materials & Interfaces, 2014, 6(13): 10213-10219.

    [36] [36] BI Y G, FENG J, LI Y F, et al. Enhanced efficiency of organic light-emitting devices with metallic electrodes by integrating periodically corrugated structure [J]. Applied Physics Letters, 2012, 100(5): 053304.

    [37] [37] REBOUD V, KHOKHAR A Z, SEPLVEDA B, et al. Enhanced light extraction in ITO-free OLEDs using double-sided printed electrodes [J]. Nanoscale, 2012, 4(11): 3495-3500.

    [38] [38] WANG L, LUO Y, FENG X M, et al. Efficiency enhancement of flexible OLEDs by using nano-corrugated substrates and conformal Ag transparent anodes [J]. AIP Advances, 2018, 8(5): 055030.

    [39] [39] MA C, LIU Y F, GAO X M, et al. Enhanced efficiency of organic light-emitting devices by using a directly imprinted nanopillared ultrathin metallic electrode [J]. Optics Letters, 2020, 45(17): 4879-4882.

    [40] [40] OU Q D, ZHOU L, LI Y Q, et al. Extremely efficient white organic light-emitting diodes for general lighting [J]. Advanced Functional Materials, 2014, 24(46): 7249-7256.

    [41] [41] LI W, LI Y Q, SHEN Y, et al. Releasing the trapped light for efficient silver nanowires-based white flexible organic light-emitting diodes [J]. Advanced Optical Materials, 2019, 7(21): 1900985.

    [42] [42] ZHAO X D, LI Y Q, XIANG H Y, et al. Efficient color-stable inverted white organic light-emitting diodes with outcoupling-enhanced ZnO layer [J]. ACS Applied Materials & Interfaces, 2017, 9(3): 2767-2775.

    [43] [43] LIU Y F, AN M H, ZHANG X L, et al. Enhanced efficiency of organic light-emitting devices with corrugated nanostructures based on soft nano-imprinting lithography [J]. Applied Physics Letters, 2016, 109(19): 193301.

    [44] [44] PARK J S, CHAE H, CHUNG H K, et al. Thin film encapsulation for flexible AM-OLED: a review [J]. Semiconductor Science and Technology, 2011, 26(3): 034001.

    [45] [45] KUNZ D A, SCHMID J, FEICHT P, et al. Clay-based nanocomposite coating for flexible optoelectronics applying commercial polymers [J]. ACS Nano, 2013, 7(5): 4275-4280.

    [46] [46] XU R P, LI Y Q, TANG J X. Recent advances in flexible organic light-emitting diodes [J]. Journal of Materials Chemistry C, 2016, 4(39): 9116-9142.

    [47] [47] YU D, YANG Y Q, CHEN Z, et al. Recent progress on thin-film encapsulation technologies for organic electronic devices [J]. Optics Communications, 2016, 362: 43-49.

    [48] [48] LIU Y F, FENG J, ZHANG Y F, et al. Polymer encapsulation of flexible top-emitting organic light-emitting devices with improved light extraction by integrating a microstructure [J]. Organic Electronics, 2014, 15(11): 2661-2666.

    [49] [49] FANG H H, YANG J, FENG J, et al. Functional organic single crystals for solid-state laser applications[J]. Laser & Photonics Review, 2015, 9(1): 128.

    [50] [50] LI Z T, MOON J, GHARAJEH A, et al. Room-temperature continuous-wave operation of organometal halide perovskite lasers [J]. ACS Nano, 2018, 12(11): 10968-10976.

    [51] [51] DING R, AN M H, FENG J, et al. Organic single-crystalline semiconductors for light-emitting applications: recent advances and developments [J]. Laser & Photonics Review, 2019, 13(10): 1900009.

    [54] [54] RIECHEL S, LEMMER U, FELDMANN J, et al. Very compact tunable solid-state laser utilizing a thin-film organic semiconductor [J]. Optics Letters, 2001, 26(9): 593-595.

    [55] [55] XIA R D, HELIOTIS G, BRADLEY D D C. Fluorene-based polymer gain media for solid-state laser emission across the full visible spectrum [J]. Applied Physics Letters, 2003, 82(21): 3599-3601.

    [56] [56] FU Y P, ZHU H M, STOUMPOS C C, et al. Broad wavelength tunable robust lasing from single-crystal nanowires of cesium lead halide perovskites (CsPbX3, X = Cl, Br, I) [J]. ACS Nano, 2016, 10(8): 7963-7972.

    [57] [57] JIA Y F, KERNER R A, GREDE A J, et al. Diode-pumped organo-lead halide perovskite lasing in a metal-clad distributed feedback resonator [J]. Nano Letters, 2016, 16(7): 4624-4629.

    [58] [58] WANG J, SUN X Y, CHEN L, et al. Direct nanoimprint of submicron organic light-emitting structures [J]. Applied Physics Letters, 1999, 75(18): 2767-2769.

    [59] [59] TSIMINIS G, WANG Y, KANIBOLOTSKY A L, et al. Nanoimprinted organic semiconductor laser pumped by a light-emitting diode [J]. Advanced Materials, 2013, 25(20): 2826-2830.

    [60] [60] KAWABE Y, WANG L, HORINOUCHI S, et al. Amplified spontaneous emission from fluorescent-dye-doped DNA-surfactant complex films [J]. Advanced Materials, 2000, 12(17): 1281-1283.

    [61] [61] BROLO A G, KWOK S C, MOFFITT M G, et al. Enhanced fluorescence from arrays of nanoholes in a gold film [J]. Journal of the American Chemical Society, 2005, 127(42): 14936-14941.

    [62] [62] CHEN Y, LI Z Y, ZHANG Z Y, et al. Nanoimprinted circular grating distributed feedback dye laser [J]. Applied Physics Letters, 2007, 91(5): 051109.

    [63] [63] REBOUD V, ROMERO-viVAS J, LOVERA P, et al. Lasing in nanoimprinted two-dimensional photonic crystal band-edge lasers [J]. Applied Physics Letters, 2013, 102(7): 073101.

    [64] [64] SCHERF U, RIECHEL S, LEMMER U, et al. Conjugated polymers: lasing and stimulated emission [J]. Current Opinion in Solid State and Materials Science, 2001, 5(2/3): 143-154.

    [65] [65] EISLER H J, SUNDAR V C, BAWENDI M G, et al. Color-selective semiconductor nanocrystal laser [J]. Applied Physics Letters, 2002, 80(24): 4614-4616.

    [66] [66] YAP B K, XIA R D, CAMPOY-QUILES M, et al. Simultaneous optimization of charge-carrier mobility and optical gain in semiconducting polymer films [J]. Nature Materials, 2008, 7(5): 376-380.

    [67] [67] CAMPOSEO A, DI BENEDETTO F, STABILE R, et al. Laser emission from electrospun polymer nanofibers [J]. Small, 2009, 5(5): 562-566.

    [68] [68] WANG Y, LI X M, SONG J Z, et al. All-inorganic colloidal perovskite quantum dots: a new class of lasing materials with favorable characteristics [J]. Advanced Materials, 2015, 27(44): 7101-7108.

    [69] [69] FAN F J, VOZNYY O, SABATINI R P, et al. Continuous-wave lasing in colloidal quantum dot solids enabled by facet-selective epitaxy [J]. Nature, 2017, 544(7648): 75-79.

    [70] [70] MELE E, CAMPOSEO A, STABILE R, et al. Polymeric distributed feedback lasers by room-temperature nanoimprint lithography [J]. Applied Physics Letters, 2006, 89(13): 131109.

    [71] [71] WHITWORTH G L, ZHANG S, STEVENSON J R Y, et al. Solvent immersion nanoimprint lithography of fluorescent conjugated polymers [J]. Applied Physics Letters, 2015, 107(16): 163301.

    [72] [72] EVEN J, PEDESSEAU L, JANCU J M, et al. Importance of spin-orbit coupling in hybrid organic/inorganic perovskites for photovoltaic applications [J]. The Journal of Physical Chemistry Letters, 2013, 4(17): 2999-3005.

    [73] [73] DESCHLER F, PRICE M, PATHAK S, et al. High photoluminescence efficiency and optically pumped lasing in solution-processed mixed halide perovskite semiconductors [J]. The Journal of Physical Chemistry Letters, 2014, 5(8): 1421-1426.

    [74] [74] SAPAROV B, MITZI D B. Organic-inorganic perovskites: structural versatility for functional materials design [J]. Chemical Reviews, 2016, 116(7): 4558-4596.

    [75] [75] ZHAO Y X, ZHU K. Organic-inorganic hybrid lead halide perovskites for optoelectronic and electronic applications [J]. Chemical Society Review, 2016, 45(3): 655-689.

    [76] [76] LI S X, XU Y S, LI C L, et al. Perovskite single-crystal microwire-array photodetectors with performance stability beyond 1 year [J]. Advanced Materials, 2020, 32(28): 2001998.

    [77] [77] POURDAVOUD N, HAEGER T, MAYER A, et al. Room-temperature stimulated emission and lasing in recrystallized cesium lead bromide perovskite thin films [J]. Advanced Materials, 2019, 31(39): 1903717.

    [78] [78] POURDAVOUD N, WANG S, MAYER A, et al. Photonic nanostructures patterned by thermal nanoimprint directly into organo- metal halide perovskites [J]. Advanced Materials, 2017, 29(12): 1605003.

    [79] [79] BAR-ON O, BRENNER P, LEMMER U, et al. Micro lasers by scalable lithography of metal-halide perovskites [J]. Advanced Materials Technologies, 2018, 3(12): 1800212.

    [80] [80] GHARAJEH A, HAROLDSON R, LI Z T, et al. Continuous-wave operation in directly patterned perovskite distributed feedback light source at room temperature [J]. Optics Letters, 2018, 43(3): 611-614.

    [81] [81] SMITH M J, LIN C H, YU S T, et al. Composite structures with emissive quantum dots for light enhancement [J]. Advanced Optical Materials, 2019, 7(4): 1801072.

    [82] [82] KIM H, ROH K, MURPHY J P, et al. Optically pumped lasing from hybrid perovskite light-emitting diodes [J]. Advanced Optical Materials, 2020, 8(1): 1901297.

    [83] [83] POURDAVOUD N, WANG S, MAYER A, et al. Photonic nanostructures patterned by thermal nanoimprint directly into organo-metal halide perovskites [J]. Advanced Materials, 2017, 29(12): 1605003.

    [84] [84] LI Z T, MOON J, GHARAJEH A, et al. Room-temperature continuous-wave operation of organometal halide perovskite lasers [J]. ACS Nano, 2018, 12(11): 10968-10976.

    Tools

    Get Citation

    Copy Citation Text

    GAO Xiu-min, LIU Yue-feng, ZHANG Hai-jing, ZHANG Tian-run, BI Yan-gang, YIN Da, FENG Jing. Nanoimprinted structures for organic light-emitting devices and lasers[J]. Chinese Journal of Liquid Crystals and Displays, 2021, 36(1): 8

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Oct. 14, 2020

    Accepted: --

    Published Online: Aug. 22, 2021

    The Author Email: GAO Xiu-min (gxmkkxx@163.com)

    DOI:10.37188/cjlcd.2020-0277

    Topics