PhotoniX, Volume. 5, Issue 1, 2(2024)
Reconfigurable flexible metasurfaces: from fundamentals towards biomedical applications
[5] [5] Chen K, Feng Y, Yang Z, Cui L, Zhao J, Zhu B, Jiang T. Geometric phase coded metasurface: from polarization dependent directive electromagnetic wave scattering to diffusion-like scattering. Sci Rep. 2016;6(1):1–10.
[30] [30] Alsaedi D, El Badawe M, Ramahi OM. A Metasurface for Biomedical Imaging Applications. Singapore: 2021 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting (APS/URSI). 2021, pp. 589–90. .
[34] [34] Khan MR, Zekios CL, Bhardwaj S, Georgakopoulos SV. Origami-enabled frequency reconfigurable dipole antenna. Atlanta: 2019 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting; 2019, pp. 901–2. .
[35] [35] Russo NE, Zekios CL, Georgakopoulos SV, An HS, Mishra AK, Shepherd RF. Design and fabrication of an origami multimode ring antenna. Boulder: 2021 United States National Committee of URSI National Radio Science Meeting (USNC-URSI NRSM); 2021, pp. 246–7. .
[36] [36] Yao S, Bonan Y, Shafiq Y, Georgakopoulos SV. Rigid origami based reconfigurable conical spiral antenna. Boston: 2018 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting. 2018, pp. 179–80. .
[38] [38] Watts CM, Liu X, Padilla WJ. Metamaterial electromagnetic wave absorbers. Adv Mater. 2012;24(23):OP98–120.
[48] [48] Wang S, Kang L, Werner DH. Hybrid resonators and highly tunable terahertz metamaterials enabled by vanadium dioxide (VO2). Sci Rep. 2017;7(1):1–8.
[54] [54] Wang G, Cao W, He X. 3D Dirac semimetal elliptical fiber supported THz tunable hybrid plasmonic waveguides. IEEE J Sel Top Quantum Electron. 2023;29(5: Terahertz Photonics):1–7.
[57] [57] Kaddour AS, Velez CA, Georgakopoulos SV. A deployable and reconfigurable origami reflectarray based on the Miura-Ori pattern. Montreal: 2020 IEEE International Symposium on Antennas and Propagation and North American Radio Science Meeting. 2020, pp. 91–2. .
[61] [61] Tanoto H, Ding L, Teng J. Tunable terahertz metamaterials. Intern J Terahertz Sci Tech. 2013;6:1–25.
[62] [62] Han Z, Kohno K, Fujita H, Hirakawa K, Toshiyoshi H. Tunable terahertz filter and modulator based on electrostatic MEMS reconfigurable SRR array. IEEE J Sel Top Quantum Electron. 2014;21(4):114–22.
[65] [65] Huang L, Chen HT. A brief review on terahertz metamaterial perfect absorbers. Terahertz Sci Technol. 2013;6(1):26–39.
[74] [74] He Q, Sun S, Zhou L. Tunable/reconfigurable metasurfaces: physics and applications. Research. 2019;2019:1849272. .
[116] [116] Li J, Yu P, Zhang S, Liu N. Electrically-controlled digital metasurface device for light projection displays. Nat Commun. 2020;11(1):1–7.
[129] [129] Bunea A-I, del Castillo Iniesta N, Droumpali A, Wetzel AE, Engay E, Taboryski R, editors. Micro 3D printing by two-photon polymerization: configurations and parameters for the nanoscribe system. Micro: MDPI; 2021.
[138] [138] Alves F, Grbovic D, Karunasiri G. MEMS THz sensors using metasurface structures. Proc. SPIE 10531, Terahertz, RF, Millimeter, and Submillimeter-Wave Technology and Applications XI, 1053111. 2018. .
[141] [141] Qian Z, Kang S, Rajaram V, Rinaldi M. Narrowband MEMS resonant infrared detectors based on ultrathin perfect plasmonic absorbers. Orlando: 2016 IEEE SENSORS. 2016, pp. 1–3. .
[146] [146] Sun Y, et al. Geometric design classification of kirigami-inspired metastructures and metamaterials. Structures. 2021;33:3633–43.
[149] [149] Miura K. Method of packaging and deployment of large membranes in space. Inst Space Astronaut Sci Rep. 1985;618:1–9.
[150] [150] Nishiyama Y. Miura folding: applying origami to space exploration. Int J pure Appl Math. 2012;79(2):269–79.
[160] [160] Chou SY, Krauss PR, Renstrom PJ. Nanoimprint lithography. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer structures Processing. Meas Phenom. 1996;14(6):4129–33.
[170] [170] Liu Z, Zhou Z, Liu K, Xiao T, Tao TH, Jiang J. Large Scale Manufacturing of Hybrid Terahertz Metamaterial Surfaces Via Wafer-Level Water Lithography. Berlin: 2019 20th International Conference on Solid-State Sensors, Actuators and Microsystems & Eurosensors XXXIII (TRANSDUCERS & EUROSENSORS XXXIII). 2019, pp. 1553–5. .
[178] [178] Wang S, Nie Y, Zhu H, Xu Y, Cao S, Zhang J, et al. Intrinsically stretchable electronics with ultrahigh deformability to monitor dynamically moving organs. Sci Adv. 2022;8(13): eabl5511.
[183] [183] Tao H, et al. Fully implantable and resorbable metamaterials. San Jose: 2012 Conference on Lasers and Electro Optics (CLEO). 2012, pp. 1–2. .
[184] [184] Li L, Ruan H, Liu C, Li Y, Shuang Y, Alù A, et al. Machine-learning reprogrammable metasurface imager. Nat Commun. 2019;10(1):1–8.
[192] [192] La Spada L, Bilotti F, Vegni L. Metamaterial biosensor for cancer detection. Limerick: SENSORS, 2011 IEEE; 2011, pp. 627–30. .
[196] [196] Wang S, Li M, Wu J, Kim D, Lu N, Su Y, Kang Z, Huang Y, Rogers JA. Mechanics of epidermal electronics. J Appl Mech. 2012;79(3):031022.
Get Citation
Copy Citation Text
Jiangtao Tian, Wenhan Cao. Reconfigurable flexible metasurfaces: from fundamentals towards biomedical applications[J]. PhotoniX, 2024, 5(1): 2
Category: Research Articles
Received: Oct. 22, 2023
Accepted: Dec. 18, 2023
Published Online: Apr. 9, 2024
The Author Email: Cao Wenhan (whcao@shanghaitech.edu.cn)