Chinese Optics, Volume. 15, Issue 6, 1243(2022)
Advances in multi-dimensional single molecule imaging
[1] GUSTAFSSON M G L. Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy[J]. Journal of Microscopy, 198, 82-87(2000).
[2] GUSTAFSSON M G L. Nonlinear structured-illumination microscopy: wide-field fluorescence imaging with theoretically unlimited resolution[J]. Proceedings of the National Academy of Sciences of the United States of America, 102, 13081-13086(2005).
[3] BLOM H, WIDENGREN J. Stimulated emission depletion microscopy[J]. Chemical Reviews, 117, 7377-7427(2017).
[4] HELL S W, WICHMANN J. Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy[J]. Optics Letters, 19, 780-782(1994).
[5] KLAR T A, JAKOBS S, DYBA M, et al. Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission[J]. Proceedings of the National Academy of Sciences of the United States of America, 97, 8206-8210(2000).
[6] RUST M J, BATES M, ZHUANG X W. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM)[J]. Nature Methods, 3, 793-796(2006).
[7] HEILEMANN M, VAN DE LINDE S, SCHÜTTPELZ M, et al. Subdiffraction-resolution fluorescence imaging with conventional fluorescent probes[J]. Angewandte Chemie International Edition, 47, 6172-6176(2008).
[8] ZHUANG X W. Nano-imaging with STORM[J]. Nature Photonics, 3, 365-367(2009).
[9] BETZIG E, PATTERSON G H, SOUGRAT R, et al. Imaging intracellular fluorescent proteins at nanometer resolution[J]. Science, 313, 1642-1645(2006).
[10] SHTENGEL G, GALBRAITH J A, GALBRAITH C G, et al. Interferometric fluorescent super-resolution microscopy resolves 3D cellular ultrastructure[J]. Proceedings of the National Academy of Sciences of the United States of America, 106, 3125-3130(2009).
[11] SHROFF H, WHITE H, BETZIG E. Photoactivated localization microscopy (PALM) of adhesion complexes[J]. Current Protocols in Cell Biology, 58, 4.21.1-24.21.28(2013).
[12] LIU Y J, LU Y Q, YANG X S, et al. Amplified stimulated emission in upconversion nanoparticles for super-resolution nanoscopy[J]. Nature, 543, 229-233(2017).
[13] ZHAN Q Q, LIU H CH, WANG B J, et al. Achieving high-efficiency emission depletion nanoscopy by employing cross relaxation in upconversion nanoparticles[J]. Nature Communications, 8, 1058(2017).
[14] LIANG L L, FENG Z W, ZHANG Q M, et al. Continuous-wave near-infrared stimulated-emission depletion microscopy using downshifting lanthanide nanoparticles[J]. Nature Nanotechnology, 16, 975-980(2021).
[15] SCHNITZBAUER J, STRAUSS M T, SCHLICHTHAERLE T, et al. Super-resolution microscopy with DNA-PAINT[J]. Nature Protocols, 12, 1198-1228(2017).
[16] SCHUEDER F, LARA-GUTIéRREZ J, BELIVEAU B J, et al. Multiplexed 3D super-resolution imaging of whole cells using spinning disk confocal microscopy and DNA-PAINT[J]. Nature Communications, 8, 2090(2017).
[17] JIA H, YANG J K, LI X J. Minimum variance unbiased subpixel centroid estimation of point image limited by photon shot noise[J]. Journal of the Optical Society of America A, 27, 2038-2045(2010).
[18] STALLINGA S, RIEGER B. Accuracy of the gaussian point spread function model in 2D localization microscopy[J]. Optics Express, 18, 24461-24476(2010).
[19] SMALL A, STAHLHEBER S. Fluorophore localization algorithms for super-resolution microscopy[J]. Nature Methods, 11, 267-279(2014).
[20] PATTERSON G, DAVIDSON M, MANLEY S, et al. Superresolution imaging using single-molecule localization[J]. Annual Review of Physical Chemistry, 61, 345-367(2010).
[21] HERBERT S, SOARES H, ZIMMER C, et al. Single-molecule localization super-resolution microscopy: deeper and faster[J]. Microscopy and Microanalysis, 18, 1419-1429(2012).
[22] HUANG B, WANG W Q, BATES M, et al. Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy[J]. Science, 319, 810-813(2008).
[23] HOLTZER L, MECKEL T, SCHMIDT T. Nanometric three-dimensional tracking of individual quantum dots in cells[J]. Applied Physics Letters, 90, 053902(2007).
[24] FU SH, LI M F, ZHOU L L, et al. Deformable mirror based optimal PSF engineering for 3D super-resolution imaging[J]. Optics Letters, 47, 3031-3034(2022).
[25] PIESTUN R, SCHECHNER Y Y, SHAMIR J. Propagation-invariant wave fields with finite energy[J]. Journal of the Optical Society of America A, 17, 294-303(2000).
[26] GREENGARD A, SCHECHNER Y Y, PIESTUN R. Depth from diffracted rotation[J]. Optics Letters, 31, 181-183(2006).
[27] PAVANI S R P, PIESTUN R. High-efficiency rotating point spread functions[J]. Optics Express, 16, 3484-3489(2008).
[28] PAVANI S R P, THOMPSON M A, BITEEN J S, et al. Three-dimensional, single-molecule fluorescence imaging beyond the diffraction limit by using a double-helix point spread function[J]. Proceedings of the National Academy of Sciences of the United States of America, 106, 2995-2999(2009).
[29] BADDELEY D, CANNELL M B, SOELLER C. Three-dimensional sub-100 nm super-resolution imaging of biological samples using a phase ramp in the objective pupil[J]. Nano Research, 4, 589-598(2011).
[30] LEW M D, LEE S F, BADIEIROSTAMI M, et al. Corkscrew point spread function for far-field three-dimensional nanoscale localization of pointlike objects[J]. Optics Letters, 36, 202-204(2011).
[31] SIVILOGLOU G A, BROKY J, DOGARIU A, et al. Observation of accelerating airy beams[J]. Physical Review Letters, 99, 213901(2007).
[32] SIVILOGLOU G A, CHRISTODOULIDES D N. Accelerating finite energy airy beams[J]. Optics Letters, 32, 979-981(2007).
[33] JIA SH, VAUGHAN J C, ZHUANG X W. Isotropic three-dimensional super-resolution imaging with a self-bending point spread function[J]. Nature Photonics, 8, 302-306(2014).
[34] LIU SH, KROMANN E B, KRUEGER W D, et al. Three dimensional single molecule localization using a phase retrieved pupil function[J]. Optics Express, 21, 29462-29487(2013).
[35] ZELGER P, KASER K, ROSSBOTH B, et al. Three-dimensional localization microscopy using deep learning[J]. Optics Express, 26, 33166-33179(2018).
[36] SHECHTMAN Y, SAHL S J, BACKER A S, et al. Optimal point spread function design for 3D imaging[J]. Physical Review Letters, 113, 133902(2014).
[37] SHECHTMAN Y, WEISS L E, BACKER A S, et al. Precise three-dimensional scan-free multiple-particle tracking over large axial ranges with tetrapod point spread functions[J]. Nano Letters, 15, 4194-4199(2015).
[38] GORDON-SOFFER R, WEISS L E, ESHEL R, et al. Microscopic scan-free surface profiling over extended axial ranges by point-spread-function engineering[J]. Science Advances, 6, eabc0332(2020).
[39] ZHOU Y ZH, CARLES G. Precise 3D particle localization over large axial ranges using secondary astigmatism[J]. Optics Letters, 45, 2466-2469(2020).
[40] WEISS L E, SHALEV EZRA Y, GOLDBERG S, et al. Three-dimensional localization microscopy in live flowing cells[J]. Nature Nanotechnology, 15, 500-506(2020).
[41] JIN D Y, XI P, WANG B M, et al. Nanoparticles for super-resolution microscopy and single-molecule tracking[J]. Nature Methods, 15, 415-423(2018).
[42] NEHME E, WEISS L E, MICHAELI T, et al. Deep-STORM: super-resolution single-molecule microscopy by deep learning[J]. Optica, 5, 458-464(2018).
[43] NEHME E, FREEDMAN D, GORDON R, et al. DeepSTORM3D: dense 3D localization microscopy and PSF design by deep learning[J]. Nature Methods, 17, 734-740(2020).
[44] BALZAROTTI F, EILERS Y, GWOSCH K C, et al. Nanometer resolution imaging and tracking of fluorescent molecules with minimal photon fluxes[J]. Science, 355, 606-612(2017).
[45] GWOSCH K C, PAPE J K, BALZAROTTI F, et al. MINFLUX nanoscopy delivers 3D multicolor nanometer resolution in cells[J]. Nature Methods, 17, 217-224(2020).
[46] TESTA I, WURM C A, MEDDA R, et al. Multicolor fluorescence nanoscopy in fixed and living cells by exciting conventional fluorophores with a single wavelength[J]. Biophysical Journal, 99, 2686-2694(2010).
[47] BROEKEN J, RIEGER B, STALLINGA S. Simultaneous measurement of position and color of single fluorescent emitters using diffractive optics[J]. Optics Letters, 39, 3352-3355(2014).
[48] SMITH C, HUISMAN M, SIEMONS M, et al. Simultaneous measurement of emission color and 3D position of single molecules[J]. Optics Express, 24, 4996-5013(2016).
[49] ZHANG ZH Y, KENNY S J, HAUSER M, et al. Ultrahigh-throughput single-molecule spectroscopy and spectrally resolved super-resolution microscopy[J]. Nature Methods, 12, 935-938(2015).
[50] SHECHTMAN Y, WEISS L E, BACKER A S, et al. Multicolour localization microscopy by point-spread-function engineering[J]. Nature Photonics, 10, 590-594(2016).
[51] HERSHKO E, WEISS L E, MICHAELI T, et al. Multicolor localization microscopy and point-spread-function engineering by deep learning[J]. Optics Express, 27, 6158-6183(2019).
[52] KIM T, MOON S, XU K. Information-rich localization microscopy through machine learning[J]. Nature Communications, 10, 1996(2019).
[53] LEW M D, BACKLUND M P, MOERNER W E. Rotational mobility of single molecules affects localization accuracy in super-resolution fluorescence microscopy[J]. Nano Letters, 13, 3967-3972(2013).
[54] ENGELHARDT J, KELLER J, HOYER P, et al. Molecular orientation affects localization accuracy in superresolution far-field fluorescence microscopy[J]. Nano Letters, 11, 209-213(2011).
[55] ZHANGHAO K, CHEN L, YANG X S, et al. Super-resolution dipole orientation mapping via polarization demodulation[J]. Light:Science & Applications, 5, e16166(2016).
[56] ZHANGHAO K, GAO J T, JIN D Y, et al. Super-resolution fluorescence polarization microscopy[J]. Journal of Innovative Optical Health Sciences, 11, 1730002(2018).
[57] ZHANGHAO K, CHEN X Y, LIU W H, et al. Super-resolution imaging of fluorescent dipoles via polarized structured illumination microscopy[J]. Nature Communications, 10, 4694(2019).
[58] BACKLUND M P, LEW M D, BACKER A S, et al. Simultaneous, accurate measurement of the 3D position and orientation of single molecules[J]. Proceedings of the National Academy of Sciences of the United States of America, 109, 19087-19092(2012).
[59] WILLIG K I, RIZZOLI S O, WESTPHAL V, et al. STED microscopy reveals that synaptotagmin remains clustered after synaptic vesicle exocytosis[J]. Nature, 440, 935-939(2006).
[60] HULLEMAN C N, THORSEN R Ø, KIM E, et al. Simultaneous orientation and 3D localization microscopy with a Vortex point spread function[J]. Nature Communications, 12, 5934(2021).
[61] HELL S, STELZER E H K. Properties of a 4Pi confocal fluorescence microscope[J]. Journal of the Optical Society of America A, 9, 2159-2166(1992).
[62] HAO X, LI Y M, FU SH, et al. Review of 4Pi fluorescence nanoscopy[J]. Engineering, 11, 146-153(2022).
[63] AQUINO D, SCHÖNLE A, GEISLER C, et al. Two-color nanoscopy of three-dimensional volumes by 4Pi detection of stochastically switched fluorophores[J]. Nature Methods, 8, 353-359(2011).
[64] HUANG F, SIRINAKIS G, ALLGEYER E S, et al. Ultra-high resolution 3D imaging of whole cells[J]. Cell, 166, 1028-1040(2016).
[65] LI Y M, BUGLAKOVA E, ZHANG Y D, et al. Accurate 4Pi single-molecule localization using an experimental PSF model[J]. Optics Letters, 45, 3765-3768(2020).
[66] CHEN J W, YAO B X, YANG ZH CH, et al. Ratiometric 4Pi single-molecule localization with optimal resolution and color assignment[J]. Optics Letters, 47, 325-328(2022).
[67] ZHANG Y D, SCHROEDER L K, LESSARD M D, et al. Nanoscale subcellular architecture revealed by multicolor three-dimensional salvaged fluorescence imaging[J]. Nature Methods, 17, 225-231(2020).
[68] STETSON P B. DAOPHOT: A computer program for crowded-field stellar photometry[J]. Publications of the Astronomical Society of the Pacific, 99, 191(1987).
[69] LEUTENEGGER M, RAO R, LEITGEB R A, et al. Fast focus field calculations[J]. Optics Express, 14, 11277-11291(2006).
[70] HANSER B M, GUSTAFSSON M G L, AGARD D A, et al. Phase retrieval for high-numerical-aperture optical systems[J]. Optics Letters, 28, 801-803(2003).
[71] BABCOCK H P, ZHUANG X W. Analyzing single molecule localization microscopy data using cubic splines[J]. Scientific Reports, 7, 552(2017).
[72] LI Y M, MUND M, HOESS P, et al. Real-time 3D single-molecule localization using experimental point spread functions[J]. Nature Methods, 15, 367-369(2018).
[73] SPEISER A, MÜLLER L R, HOESS P, et al. Deep learning enables fast and dense single-molecule localization with high accuracy[J]. Nature Methods, 18, 1082-1090(2021).
[74] THIELE J C, HELMERICH D A, OLEKSIIEVETS N, et al. Confocal fluorescence-lifetime single-molecule localization microscopy[J]. ACS Nano, 14, 14190-14200(2020).
[75] LIN Y, SHARIFI F, ANDERSSON S B. Three-dimensional localization refinement and motion model parameter estimation for confined single particle tracking under low-light conditions[J]. Biomedical Optics Express, 12, 5793-5811(2021).
[76] LI Y M, WU Y L, HOESS P, et al. Depth-dependent PSF calibration and aberration correction for 3D single-molecule localization[J]. Biomedical Optics Express, 10, 2708-2718(2019).
[77] LI Y M, SHI W, LIU SH, et al. Global fitting for high-accuracy multi-channel single-molecule localization[J]. Nature Communications, 13, 3133(2022).
Get Citation
Copy Citation Text
Meng-fan LI, Jian-wei CHEN, Wei SHI, Shuang FU, Yun-ze LI, Ting-dan LUO, Jun-fan CHEN, Yi-ming LI. Advances in multi-dimensional single molecule imaging[J]. Chinese Optics, 2022, 15(6): 1243
Category: Review
Received: Apr. 30, 2022
Accepted: Jun. 28, 2022
Published Online: Feb. 9, 2023
The Author Email: