Acta Optica Sinica, Volume. 44, Issue 10, 1026013(2024)
From Random Speckle to “Opaque Lens”—Scattered Light Focusing Technique Based on Wavefront Shaping (Invited)
[1] Goodman J W[M]. Speckle Phenomena in optics: theory and applications(2007).
[2] Ma C J, Di J L, Zhang Y et al. Reconstruction of structured laser beams through a multimode fiber based on digital optical phase conjugation[J]. Optics Letters, 43, 3333-3336(2018).
[3] N'Gom M, Norris T B, Michielssen E et al. Mode control in a multimode fiber through acquiring its transmission matrix from a reference-less optical system[J]. Optics Letters, 43, 419-422(2018).
[4] Li S H, Saunders C, Lum D J et al. Compressively sampling the optical transmission matrix of a multimode fibre[J]. Light, Science & Applications, 10, 88(2021).
[5] Wang L, Jacques S L. Use of a laser beam with an oblique angle of incidence to measure the reduced scattering coefficient of a turbid medium[J]. Applied Optics, 34, 2362-2366(1995).
[6] Volpe G, Kurz L, Callegari A et al. Speckle optical tweezers: micromanipulation with random light fields[J]. Optics Express, 22, 18159-18167(2014).
[7] Čižmár T, Mazilu M, Dholakia K. In situ wavefront correction and its application to micromanipulation[J]. Nature Photonics, 4, 388-394(2010).
[8] Gieseler J, Gomez-Solano J R, Magazzù A et al. Optical tweezers: from calibration to applications: a tutorial[J]. Advances in Optics and Photonics, 13, 74-241(2021).
[9] Lee K, Park Y. Exploiting the speckle-correlation scattering matrix for a compact reference-free holographic image sensor[J]. Nature Communications, 7, 13359(2016).
[10] Gong L, Zhao Q, Zhang H et al. Optical orbital-angular-momentum-multiplexed data transmission under high scattering[J]. Light, Science & Applications, 8, 27(2019).
[11] Zhu L, Soldevila F, Moretti C et al. Large field-of-view non-invasive imaging through scattering layers using fluctuating random illumination[J]. Nature Communications, 13, 1447(2022).
[12] Yoon S, Kim M, Jang M et al. Deep optical imaging within complex scattering media[J]. Nature Reviews Physics, 2, 141-158(2020).
[13] Turtaev S, Leite I T, Altwegg-Boussac T et al. High-fidelity multimode fibre-based endoscopy for deep brain in vivo imaging[J]. Light, Science & Applications, 7, 92(2018).
[14] Choi Y, Yoon C, Kim M et al. Scanner-free and wide-field endoscopic imaging by using a single multimode optical fiber[J]. Physical Review Letters, 109, 203901(2012).
[15] Freund I. Looking through walls and around corners[J]. Physica A: Statistical Mechanics and Its Applications, 168, 49-65(1990).
[16] Vellekoop I M, Mosk A P. Focusing coherent light through opaque strongly scattering media[J]. Optics Letters, 32, 2309-2311(2007).
[17] Peng T, Li R Z, An S et al. Real-time optical manipulation of particles through turbid media[J]. Optics Express, 27, 4858-4866(2019).
[18] Liu K G, Zhang H K, Du S S et al. Particle manipulation behind a turbid medium based on the intensity transmission matrix[J]. Photonics Research, 10, 2293-2301(2022).
[19] Papadopoulos I N, Jouhanneau J S, Poulet J F A et al. Scattering compensation by focus scanning holographic aberration probing (F-SHARP)[J]. Nature Photonics, 11, 116-123(2017).
[20] Lai P X, Wang L D, Tay J W et al. Photoacoustically guided wavefront shaping for enhanced optical focusing in scattering media[J]. Nature Photonics, 9, 126-132(2015).
[21] Vellekoop I M, Lagendijk A, Mosk A P. Exploiting disorder for perfect focusing[J]. Nature Photonics, 4, 320-322(2010).
[22] Matthès M W, del Hougne P, de Rosny J et al. Optical complex media as universal reconfigurable linear operators[J]. Optica, 6, 465-472(2019).
[23] Xiong W, Hsu C W, Bromberg Y et al. Complete polarization control in multimode fibers with polarization and mode coupling[J]. Light, Science & Applications, 7, 54(2018).
[24] Wang D, Sahoo S K, Zhu X W et al. Non-invasive super-resolution imaging through dynamic scattering media[J]. Nature Communications, 12, 3150(2021).
[25] Cao J, Yang Q, Miao Y S et al. Enhance the delivery of light energy ultra-deep into turbid medium by controlling multiple scattering photons to travel in open channels[J]. Light, Science & Applications, 11, 108(2022).
[26] Feng Q, Zhang B, Liu Z P et al. Research on intelligent algorithms for amplitude optimization of wavefront shaping[J]. Applied Optics, 56, 3240-3244(2017).
[27] Kong F T, Silverman R H, Liu L P et al. Photoacoustic-guided convergence of light through optically diffusive media[J]. Optics Letters, 36, 2053-2055(2011).
[28] Qiao Y Q, Peng Y J, Zheng Y L et al. Second-harmonic focusing by a nonlinear turbid medium via feedback-based wavefront shaping[J]. Optics Letters, 42, 1895-1898(2017).
[29] Vellekoop I M, Mosk A P. Phase control algorithms for focusing light through turbid media[J]. Optics Communications, 281, 3071-3080(2008).
[30] Conkey D B, Brown A N, Caravaca-Aguirre A M et al. Genetic algorithm optimization for focusing through turbid media in noisy environments[J]. Optics Express, 20, 4840-4849(2012).
[31] Wang Z Q, Zhao Q, Yu P P et al. Bat algorithm-enabled binary optimization for scattered light focusing[J]. Applied Physics Express, 12, 102002(2019).
[32] Fayyaz Z, Mohammadian N, Salimi F et al. Simulated annealing optimization in wavefront shaping controlled transmission[J]. Applied Optics, 57, 6233-6242(2018).
[33] Woo C M, Li H H, Zhao Q et al. Dynamic mutation enhanced particle swarm optimization for optical wavefront shaping[J]. Optics Express, 29, 18420-18426(2021).
[34] Yang J M, He Q Z, Liu L X et al. Anti-scattering light focusing by fast wavefront shaping based on multi-pixel encoded digital-micromirror device[J]. Light, Science & Applications, 10, 149(2021).
[35] Huang H L, Chen Z Y, Sun C Z et al. Light focusing through scattering media by particle swarm optimization[J]. Chinese Physics Letters, 32, 104202(2015).
[36] Rahmani B, Loterie D, Konstantinou G et al. Multimode optical fiber transmission with a deep learning network[J]. Light, Science & Applications, 7, 69(2018).
[37] Tahir W, Wang H, Tian L. Adaptive 3D descattering with a dynamic synthesis network[J]. Light, Science & Applications, 11, 42(2022).
[38] Horisaki R, Takagi R, Tanida J. Learning-based focusing through scattering media[J]. Applied Optics, 56, 4358-4362(2017).
[39] Turpin A, Vishniakou I, Seelig J D. Light scattering control in transmission and reflection with neural networks[J]. Optics Express, 26, 30911-30929(2018).
[40] Goel S, Conti C, Leedumrongwatthanakun S et al. Referenceless characterization of complex media using physics-informed neural networks[J]. Optics Express, 31, 32824-32839(2023).
[41] Luo Y Q, Yan S X, Li H H et al. Focusing light through scattering media by reinforced hybrid algorithms[J]. APL Photonics, 5, 016109(2020).
[42] Liu K G, Zhang H K, Zhang B et al. Hybrid optimization algorithm based on neural networks and its application in wavefront shaping[J]. Optics Express, 29, 15517-15527(2021).
[43] Fan M Y, Zhu J, Wang S T et al. Light scattering control with the two-step focusing method based on neural networks and multi-pixel coding[J]. Optics Express, 30, 46888-46899(2022).
[44] Woo C M, Zhao Q, Zhong T T et al. Optimal efficiency of focusing diffused light through scattering media with iterative wavefront shaping[J]. APL Photonics, 7, 046109(2022).
[45] Vellekoop I M, van Putten E G, Lagendijk A et al. Demixing light paths inside disordered metamaterials[J]. Optics Express, 16, 67-80(2008).
[46] Boniface A, Blochet B, Dong J et al. Noninvasive light focusing in scattering media using speckle variance optimization[J]. Optica, 6, 1381-1385(2019).
[47] Conkey D B, Caravaca-Aguirre A M, Dove J D et al. Super-resolution photoacoustic imaging through a scattering wall[J]. Nature Communications, 6, 7902(2015).
[48] Shi J H, Wong T T W, He Y et al. High-resolution, high-contrast mid-infrared imaging of fresh biological samples with ultraviolet-localized photoacoustic microscopy[J]. Nature Photonics, 13, 609-615(2019).
[49] Aulbach J, Gjonaj B, Johnson P et al. Spatiotemporal focusing in opaque scattering media by wave front shaping with nonlinear feedback[J]. Optics Express, 20, 29237-29251(2012).
[50] Tay J W, Lai P X, Suzuki Y et al. Ultrasonically encoded wavefront shaping for focusing into random media[J]. Scientific Reports, 4, 3918(2014).
[51] Tzang O, Niv E, Caravaca-Aguirre A M et al. Thermal expansion feedback for wave-front shaping[J]. Optics Express, 25, 6122-6131(2017).
[52] Tian B X, Rauer B, Boniface A et al. Non-invasive chemically selective energy delivery and focusing inside a scattering medium guided by Raman scattering[J]. Optics Letters, 47, 2145-2148(2022).
[53] Akbulut D, Huisman T J, van Putten E G et al. Focusing light through random photonic media by binary amplitude modulation[J]. Optics Express, 19, 4017-4029(2011).
[54] Cui M. Parallel wavefront optimization method for focusing light through random scattering media[J]. Optics Letters, 36, 870-872(2011).
[55] Tzang O, Niv E, Singh S et al. Wavefront shaping in complex media with a 350 kHz modulator via a 1D-to-2D transform[J]. Nature Photonics, 13, 788-793(2019).
[56] Jang J, Lim J, Yu H et al. Complex wavefront shaping for optimal depth-selective focusing in optical coherence tomography[J]. Optics Express, 21, 2890-2902(2013).
[57] Katz O, Small E, Guan Y F et al. Noninvasive nonlinear focusing and imaging through strongly scattering turbid layers[J]. Optica, 1, 170-174(2014).
[58] Park J H, Sun W, Cui M. High-resolution in vivo imaging of mouse brain through the intact skull[J]. Proceedings of the National Academy of Sciences of the United States of America, 112, 9236-9241(2015).
[59] Wijethilake N, Anandakumar M, Zheng C et al. DEEP-squared: deep learning powered de-scattering with Excitation Patterning[J]. Light, Science & Applications, 12, 228(2023).
[60] Bai B J, Li Y H, Luo Y et al. All-optical image classification through unknown random diffusers using a single-pixel diffractive network[J]. Light, Science & Applications, 12, 69(2023).
[61] Zhang C, Gao Y F, Ye S W et al. Application of adaptive optics in two-photon microscopic imaging[J]. Chinese Journal of Lasers, 50, 0307103(2023).
[62] Tian B X, Han J, Liu B C. Research on non-invasive deep focusing in random scattering medium[J]. Laser & Optoelectronics Progress, 59, 1029001(2022).
[63] Popoff S M, Lerosey G, Fink M et al. Controlling light through optical disordered media: transmission matrix approach[J]. New Journal of Physics, 13, 123021(2011).
[64] Zhang H K, Zhang B, Liu K G et al. Large-scale, high-contrast glare suppression with low-transmittance eigenchannels of aperture-target transmission matrices[J]. Optics Letters, 46, 1498-1501(2021).
[65] Bender N, Yamilov A, Goetschy A et al. Depth-targeted energy delivery deep inside scattering media[J]. Nature Physics, 18, 309-315(2022).
[66] Choi W, Mosk A P, Park Q H et al. Transmission eigenchannels in a disordered medium[J]. Physical Review B, 83, 134207(2011).
[67] Ni F C, Liu H G, Zheng Y L et al. Nonlinear harmonic wave manipulation in nonlinear scattering medium via scattering-matrix method[J]. Advanced Photonics, 5, 046010(2023).
[68] Judkewitz B, Horstmeyer R, Vellekoop I M et al. Translation correlations in anisotropically scattering media[J]. Nature Physics, 11, 684-689(2015).
[69] Shui Y Y, Wang T, Zhou J Y et al. Scattered light imaging beyond the memory effect using the dynamic properties of thick turbid media[J]. Advanced Photonics Nexus, 2, 026010(2023).
[70] Popoff S M, Lerosey G, Carminati R et al. Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media[J]. Physical Review Letters, 104, 100601(2010).
[71] Tripathi S, Paxman R, Bifano T et al. Vector transmission matrix for the polarization behavior of light propagation in highly scattering media[J]. Optics Express, 20, 16067-16076(2012).
[72] Ding C X, Shao R J, Qu Y et al. Spatial full degree-of-freedom scattered optical field modulation[J]. Laser & Photonics Reviews, 17, 2300104(2023).
[73] Chaigne T, Katz O, Boccara A C et al. Controlling light in scattering media non-invasively using the photoacoustic transmission matrix[J]. Nature Photonics, 8, 58-64(2014).
[74] Andreoli D, Volpe G, Popoff S et al. Deterministic control of broadband light through a multiply scattering medium via the multispectral transmission matrix[J]. Scientific Reports, 5, 10347(2015).
[75] Mounaix M, Andreoli D, Defienne H et al. Spatiotemporal coherent control of light through a multiple scattering medium with the multispectral transmission matrix[J]. Physical Review Letters, 116, 253901(2016).
[76] Zhang H K, Zhang B, Liu Q. OAM-basis transmission matrix in optics: a novel approach to manipulate light propagation through scattering media[J]. Optics Express, 28, 15006-15015(2020).
[77] Liu Z Q, Zhang H K, Liu K G et al. Data transmission under high scattering based on OAM-basis transmission matrix[J]. Optics Letters, 47, 4580-4583(2022).
[78] Rotter S, Gigan S. Light fields in complex media: Mesoscopic scattering meets wave control[J]. Reviews of Modern Physics, 89, 015005(2017).
[79] Kim M, Choi Y, Yoon C et al. Maximal energy transport through disordered media with the implementation of transmission eigenchannels[J]. Nature Photonics, 6, 581-585(2012).
[80] Kim M, Choi W, Yoon C et al. Exploring anti-reflection modes in disordered media[J]. Optics Express, 23, 12740-12749(2015).
[81] Jo Y, Choi W, Seo E et al. Maximizing energy coupling to complex plasmonic devices by injecting light into eigenchannels[J]. Scientific Reports, 7, 9779(2017).
[82] Yamilov A G, Sarma R, Yakovlev V V et al. Coherent injection of light into an absorbing scattering medium with a microscopic pore[J]. Optics Letters, 43, 2189-2192(2018).
[83] Katz O, Ramaz F, Gigan S et al. Controlling light in complex media beyond the acoustic diffraction-limit using the acousto-optic transmission matrix[J]. Nature Communications, 10, 717(2019).
[84] Mounaix M, Ta D M, Gigan S. Transmission matrix approaches for nonlinear fluorescence excitation through multiple scattering media[J]. Optics Letters, 43, 2831-2834(2018).
[85] Liu Z Q, Zhang B, Zhang H K et al. Multi-channel data transmission through a multimode fiber based on OAM phase encoding[J]. Optics Letters, 48, 5615-5618(2023).
[86] Liu K G, Zhang H K, Liu Z Q et al. Transmission matrix-based phase correction for optical systems[J]. Optics Letters, 47, 5216-5219(2022).
[87] Cheng S F, Zhang X Y, Zhong T T et al. Nonconvex optimization for optimum retrieval of the transmission matrix of a multimode fiber[J]. Advanced Photonics Nexus, 2, 066005(2023).
[88] Zhong J S, Wen Z, Li Q Z et al. Efficient reference-less transmission matrix retrieval for a multimode fiber using fast Fourier transform[J]. Advanced Photonics Nexus, 2, 056007(2023).
[89] Ancora D, Dominici L, Gianfrate A et al. Speckle spatial correlations aiding optical transmission matrix retrieval: the smoothed Gerchberg-Saxton single-iteration algorithm[J]. Photonics Research, 10, 2349-2358(2022).
[90] Valzania L, Gigan S. Online learning of the transmission matrix of dynamic scattering media[J]. Optica, 10, 708-716(2023).
[91] Yaqoob Z, Psaltis D, Feld M S et al. Optical phase conjugation for turbidity suppression in biological samples[J]. Nature Photonics, 2, 110-115(2008).
[92] Cheng Z T, Li C M Y, Khadria A et al. High-gain and high-speed wavefront shaping through scattering media[J]. Nature Photonics, 17, 299-305(2023).
[93] Cui M, Yang C H. Implementation of a digital optical phase conjugation system and its application to study the robustness of turbidity suppression by phase conjugation[J]. Optics Express, 18, 3444-3455(2010).
[94] Hsieh C L, Pu Y, Grange R et al. Digital phase conjugation of second harmonic radiation emitted by nanoparticles in turbid media[J]. Optics Express, 18, 12283-12290(2010).
[95] Vellekoop I M, Cui M, Yang C H. Digital optical phase conjugation of fluorescence in turbid tissue[J]. Applied Physics Letters, 101, 081108(2012).
[96] Papadopoulos I N, Farahi S, Moser C et al. Focusing and scanning light through a multimode optical fiber using digital phase conjugation[J]. Optics Express, 20, 10583-10590(2012).
[97] Yang J M, Shen Y C, Liu Y et al. Focusing light through scattering media by polarization modulation based generalized digital optical phase conjugation[J]. Applied Physics Letters, 111, 201108(2017).
[98] Ruan H W, Haber T, Liu Y et al. Focusing light inside scattering media with magnetic-particle-guided wavefront shaping[J]. Optica, 4, 1337-1343(2017).
[99] Yu Z P, Huangfu J T, Zhao F Y et al. Time-reversed magnetically controlled perturbation (TRMCP) optical focusing inside scattering media[J]. Scientific Reports, 8, 2927(2018).
[100] Xu X, Liu H L, Wang L V. Time-reversed ultrasonically encoded optical focusing into scattering media[J]. Nature Photonics, 5, 154-157(2011).
[101] Wang Y M, Judkewitz B, Dimarzio C A et al. Deep-tissue focal fluorescence imaging with digitally time-reversed ultrasound-encoded light[J]. Nature Communications, 3, 928(2012).
[102] Lai P X, Xu X, Liu H L et al. Reflection-mode time-reversed ultrasonically encoded optical focusing into turbid media[J]. Journal of Biomedical Optics, 16, 080505(2011).
[103] Si K, Fiolka R, Cui M. Breaking the spatial resolution barrier via iterative sound-light interaction in deep tissue microscopy[J]. Scientific Reports, 2, 748(2012).
[104] Judkewitz B, Wang Y M, Horstmeyer R et al. Speckle-scale focusing in the diffusive regime with time-reversal of variance-encoded light (TROVE)[J]. Nature Photonics, 7, 300-305(2013).
[105] Liu Y, Lai P X, Ma C et al. Optical focusing deep inside dynamic scattering media with near-infrared time-reversed ultrasonically encoded (TRUE) light[J]. Nature Communications, 6, 5904(2015).
[106] Ruan H W, Brake J, Robinson J E et al. Deep tissue optical focusing and optogenetic modulation with time-reversed ultrasonically encoded light[J]. Science Advances, 3, eaao5520(2017).
[107] Cheng Z T, Wang L V. Focusing light into scattering media with ultrasound-induced field perturbation[J]. Light, Science & Applications, 10, 159(2021).
[108] Luo J W, Liu Y, Wu D X et al. High-speed single-exposure time-reversed ultrasonically encoded optical focusing against dynamic scattering[J]. Science Advances, 8, eadd9158(2022).
Get Citation
Copy Citation Text
Kaige Liu, Hengkang Zhang, Xing Fu, Qiang Liu. From Random Speckle to “Opaque Lens”—Scattered Light Focusing Technique Based on Wavefront Shaping (Invited)[J]. Acta Optica Sinica, 2024, 44(10): 1026013
Category: Physical Optics
Received: Nov. 22, 2023
Accepted: Dec. 27, 2023
Published Online: Apr. 23, 2024
The Author Email: Xing Fu (fuxing@mail.tsinghua.edu.cn), Qiang Liu (qiangliu@mail.tsinghua.edu.cn)
CSTR:32393.14.AOS231825