Laser & Infrared, Volume. 54, Issue 11, 1659(2024)

Research progress on mid-infrared laser technology

ZHANG Xi-ning, TANG Xiao-jun, CHEN Guo, LIU Kun, ZHANG Kun, and ZHAO Hong
Author Affiliations
  • The 11th Research Institute of CETC, Beijing 100015, China
  • show less
    References(23)

    [7] [7] Pan Qikun, Xie Jijiang, Chen Fei, et al. Transversal parasitic oscillation suppression in high gain pulsed Fe2+: ZnSe laser at room temperature[J]. Optics and Laser Technology, 2020, 127: 106151.

    [9] [9] Maes F, Fortin V, Bernier M, et al. 5.6 W monolithic fiber laser at 3.55 m[J]. Optics Letters, 2017, 42(11): 2054-2057.

    [12] [12] Liu Shande, Wang Zhaowei, Zhang Baitao, et al. Wildly tunable, high-efficiency MgO: PPLN mid-IR optical parametric oscillator pumped by a Yb-fiber laser[J]. Chinese Physics Letters, 2014, 31(2): 024204.

    [13] [13] Alexander Hemming, Jim Richards, Alan Davidson, et al. 99 W mid-IR operation of a ZGP OPO at 25 % duty cycle[J]. Optics Express, 2013, 21(8): 10062-10069.

    [14] [14] Bernier M, Fortin V, El-Amraoui M, et al. 3.77m fiber laser based on cascaded Raman gain in a chalcogenide glass fiber[J]. Optics Letters, 2014, 39(7): 2052-2055.

    [15] [15] Astapovich M S, Gladyshev A V, Khudyakov M M, et al. Watt-level nanosecond 4.42 m Raman laser based on silica fiber[J]. IEEE Photonics Technology Letters, 2019, 31(1): 78-81.

    [16] [16] Andriukaitis G, Balinas T, Aliauskas S, et al. 90 GW peakpower few-cycle mid-infrared pulses from an optical parametric amplifier[J]. Optics Letters, 2011, 36(15): 2755-2757.

    [17] [17] Balabanov S S, Firsov K N, Gavrishchuk E M, et al. Room-temperature lasing on Fe2+: ZnSe with meniscus inner doped layer fabricated by solid-state diffusion bonding[J]. Laser Physics Letters, 2019, 16(5): 055004.

    [18] [18] M P Frolov, Yu V Korostellin, V I Kozlovsky, et al. Study of a room temperature, monocrystalline Fe: ZnSe laser, pumped by a high-energy, free-running Er∶YAG laser[J]. Laser Physics, 2019, 29(8): 085004.

    [19] [19] Maes F, Fortin V, Poulain S, et al. Room-temperature fiber laser at 3.92m[J]. Optica, 2018, 5(7): 761-764.

    [20] [20] V Fortin, F Jobin, M Larose, et al. 10 W level monolithic dysprosium-doped fiber laser at 3.24 m[J]. Optics Letters, 2019, 44(3): 491-494.

    [21] [21] M L. Tanguay, M. Fortin, V. Boilard, et al. 15W monolithic fiber laser at 3.55m[J]. Optics Letters, 2022, 47(2): 289-292.

    [22] [22] Cui Yulong, Huang Wei, Wang Zefeng, et al. 4.3m fiber laser in CO2-filled hollow-core silica fibers[J]. Optica, 2019, 6(8): 951-954.

    [25] [25] Wenjia zhou, Donghai Wu, Quan-Yong Lu, et al. Single-mode, high-power, mid-infrared, quantum cascade laser phased arrays[J]. Scientific Reports, 2018, 8(26): 14866.

    [26] [26] V V Dudelev, D A Mikhailov, A V Babichev, et al. Development and study of high-power quantum-cascade lasersemittingat 4.5-4.6 m[J]. Quantum Electronics, 2020, 50(11): 989-994.

    [27] [27] Wang F, Slivken S, Wu D H, et al. Room temperature quantum cascade lasers with 22 % wall plug efficiency in continuous-wave operation[J]. Optics Express, 2020, 28(12): 17532-17538.

    [28] [28] Teng Fei, ShenqiangZhai, Jinchuan Zhang, et al. 3 W continuous-wave room temperature quantum cascade laser grown by metal-organic chemical vapor deposition[J]. Photonics, 2023, 10(1): 47.

    [29] [29] Qian Chuanpeng, Yao Baoquan, Zhao Benrui, et al. High repetition rate 102W middle infrared ZnGeP2 master oscillator power amplifier system with thermal lens compensation[J]. Optics Letters, 2019, 44(3): 715-718.

    [30] [30] Yang Ke, Liu Gaoyou, Li Chunxiao, et al. Research on performance improvement technology of a BaGa4Se7 mid-infrared optical parametric oscillator[J]. Optics Letters, 2020, 45(23): 6418-6421.

    [31] [31] Liu Gaoyou, Mi Shuyi, Yang Ke, et al. 161 W middle infrared ZnGeP2 MOPA system pumped by 300 W-class Ho∶YAG MOPA system[J]. Optics Letters, 2021, 45(1): 82-85.

    [32] [32] Duval S, Gauthier J C, Robichaud L R, et al. Watt-level fiber-based femtosecond laser source tunable from 2.8m to 3.6m[J]. Optics Letters, 2016, 41(22): 5294-5297.

    [33] [33] A V Mitrofanov, A A Voronin, D A Sidorov-Biryukov, et al. Subterawatt few-cycle mid-infrared pulses from a single filament[J]. Optica, 2016, 3(3): 299-302.

    [34] [34] Wang Pengfei, Li Yanyan, Li Wenkai, et al. 2.6mJ/100Hz CEP-stable near-single-cycle 4m laser based on OPCPA and hollow-core fiber compression[J]. Optics Letter, 2018, 43(9): 2197-2200.

    Tools

    Get Citation

    Copy Citation Text

    ZHANG Xi-ning, TANG Xiao-jun, CHEN Guo, LIU Kun, ZHANG Kun, ZHAO Hong. Research progress on mid-infrared laser technology[J]. Laser & Infrared, 2024, 54(11): 1659

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Oct. 22, 2024

    Accepted: Jan. 14, 2025

    Published Online: Jan. 14, 2025

    The Author Email:

    DOI:10.3969/j.issn.1001-5078.2024.11.002

    Topics