Acta Optica Sinica, Volume. 42, Issue 9, 0930003(2022)

Quantitative Analysis of Carbon Content in Fly Ash Using LIBS Based on Support Vector Machine Regression

Peng Chen1, Chao Qi2, Renwei Liu1, Zhenzhen Wang1,3、*, Han Luo1, Junjie Yan1,3, Jiping Liu1, and Yoshihiro Deguchi1,3
Author Affiliations
  • 1School of Energy and Power Engineering, Xi′an Jiaotong University, Xi′an 710049, Shaanxi, China
  • 2Xi′an Aerospace Propulsion Institute, Xi′an 710100, Shaanxi, China
  • 3Graduate School of Technology, Industrial and Social Sciences, Tokushima University, Tokushima 770- 8506, Japan
  • show less
    Figures & Tables(10)
    Schematic of LIBS experimental system
    LIBS spectra of sample GD_0 at different resolutions. (a) Resolution is 0.075 nm/pixel; (b) resolution is 0.012 nm/pixel
    Calibration curves of carbon content in fly ash under different methods. (a) Traditional calibration method; (b) internal standard method
    Effects of c and g on MSE. (a) Training results of RBF kernel function; (b) training results of polynomial kernel function
    Quantitative analysis of carbon content based on characteristic spectra of internal standard elements
    Quantitative analysis of carbon content based on full spectrum
    Quantitative analysis of carbon content based on characteristic spectra of major elements
    • Table 1. Carbon content of fly ash samples

      View table

      Table 1. Carbon content of fly ash samples

      SamplenumberLabelC contentyC /%SamplenumberLabelC contentyC /%SamplenumberLabelC contentyC /%
      1GD_020.819GE_045.6417GY_034.60
      2GD_226.5410GE_248.7618GY_238.77
      3GD_534.0511GE_553.0119GY_544.35
      4GD_840.5212GE_856.8220GY_849.27
      5GD_1044.3513GE_1059.1421GY_1049.27
      6GD_1552.5914GE_1564.3222GY_1552.23
      7GD_2059.3415GE_2068.7423GY_2064.19
      8GD_3069.7016GE_3075.9324GY_3072.83
    • Table 2. Information of main characteristic lines

      View table

      Table 2. Information of main characteristic lines

      ElementIonizationWavelength W /nmUpper level Ei /cm-1Lower level Ek /cm-1
      CC I247.8621648.0361981.83
      Si_2Si I250.6977.1239955.05
      Si_3Si I251.43039760.28
      Si_4Si I251.61223.1639955.05
      Si_5Si I251.9277.1239760.28
      Si_6Si I252.4177.1239683.16
      Si_7Si I252.85223.1639760.28
      FeFe I & Fe II274.20--275.63415.93--8846.7036686.16--45289.80
      Mg_1Mg II279.55--280.30035760.88--35669.31
      Mg_2Mg I285.21035051.26
      Si_1Si I288.166298.8540991.88
      AlAl I309.27112.0632436.80
      Ca_1Ca II315.8925191.5156839.25
      Ca_2Ca II318.1325414.4056839.25
    • Table 3. Evaluation index of carbon content under three inputs

      View table

      Table 3. Evaluation index of carbon content under three inputs

      InputR2RMSEC /%RMSEP /%
      Iinput10.8606.215.66
      Whole spectra0.9600.035.72
      Iinput20.9861.792.57
    Tools

    Get Citation

    Copy Citation Text

    Peng Chen, Chao Qi, Renwei Liu, Zhenzhen Wang, Han Luo, Junjie Yan, Jiping Liu, Yoshihiro Deguchi. Quantitative Analysis of Carbon Content in Fly Ash Using LIBS Based on Support Vector Machine Regression[J]. Acta Optica Sinica, 2022, 42(9): 0930003

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Spectroscopy

    Received: Sep. 14, 2021

    Accepted: Nov. 25, 2021

    Published Online: May. 6, 2022

    The Author Email: Zhenzhen Wang (zhenzhen?wang@xjtu.edu.cn)

    DOI:10.3788/AOS202242.0930003

    Topics