Journal of Infrared and Millimeter Waves, Volume. 43, Issue 3, 397(2024)

Arctic sea surface CO2 partial pressure based on LiDAR

Si-Qi ZHANG1,2,3, Peng CHEN3,4、*, Zhen-Hua ZHANG1, and De-Lu PAN1,3
Author Affiliations
  • 1Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou),Guangzhou 511458,China
  • 2Institute of Oceanographic Instrumentation,Qilu University of Technology (Shandong Academy of Sciences) ,Qingdao 266061,China
  • 3State Key Laboratory of Satellite Ocean Environment Dynamics,Second Institute of Oceanography,Ministry of Natural Resources,Hangzhou 310012,China
  • 4Donghai Laboratory,Zhoushan 316021,China
  • show less
    References(48)

    [1] REAY D[M]. Greenhouse gas sinks(2007).

    [2] SABINE C L, FEELY R A, GRUBER N et al. The oceanic sink for anthropogenic CO2[J]. science, 305, 367-71(2004).

    [3] ARICò S, WANNINKHOF R, SABINE C. Integrated ocean carbon research: A summary of ocean carbon research, and vision of coordinated ocean carbon research and observations for the next decade[J](2021).

    [4] TAKAHASHI T, OLAFSSON J, GODDARD J G et al. Seasonal variation of CO2 and nutrients in the high‐latitude surface oceans: A comparative study[J]. Global Biogeochemical Cycles, 7, 843-78(1993).

    [5] SARMIENTO J L. Ocean biogeochemical dynamics[M]. Ocean Biogeochemical Dynamics(2013).

    [6] RöDENBECK C, BAKKER D C, GRUBER N et al. Data-based estimates of the ocean carbon sink variability-first results of the Surface Ocean pCO2 Mapping intercomparison (SOCOM)[J]. Biogeosciences, 12, 7251-78(2015).

    [7] LE QUéRé C, ANDREW R M, FRIEDLINGSTEIN P et al. Global carbon budget 2017[J]. Earth System Science Data, 10, 405-48(2018).

    [8] ONARHEIM I H, ELDEVIK T, SMEDSRUD L H et al. Seasonal and regional manifestation of Arctic sea ice loss[J]. Journal of Climate, 31, 4917-32(2018).

    [9] STROEVE J, NOTZ D. Changing state of Arctic sea ice across all seasons[J]. Environmental Research Letters, 13, 103001(2018).

    [10] TIMMERMANS M L, PROSHUTINSKY A, GOLUBEVA E et al. Mechanisms of Pacific summer water variability in the Arctic's Central Canada Basin[J]. Journal of Geophysical Research: Oceans, 119, 7523-48(2014).

    [11] CORLETT W B, PICKART R S. The Chukchi slope current[J]. Progress in Oceanography, 153, 50-65(2017).

    [12] STABENO P, KACHEL N, LADD C et al. Flow patterns in the eastern Chukchi Sea: 2010–2015[J]. Journal of Geophysical Research: Oceans, 123, 1177-95(2018).

    [13] GILES K A, LAXON S W, RIDOUT A L et al. Western Arctic Ocean freshwater storage increased by wind-driven spin-up of the Beaufort Gyre[J]. Nature Geoscience, 5, 194-7(2012).

    [14] YAMAMOTO‐KAWAI M, MCLAUGHLIN F, CARMACK E et al. Surface freshening of the Canada Basin, 2003-2007: River runoff versus sea ice meltwater[J]. Journal of Geophysical Research: Oceans, 114(2009).

    [15] ARRIGO K R, VAN DIJKEN G L. Continued increases in Arctic Ocean primary production[J]. Progress in Oceanography, 136, 60-70(2015).

    [16] YAMAMOTO-KAWAI M, MCLAUGHLIN F A, CARMACK E C et al. Aragonite undersaturation in the Arctic Ocean: effects of ocean acidification and sea ice melt[J]. Science, 326, 1098-100(2009).

    [17] MONITORING A. Arctic Ocean Acidification Assessment: 2018 Summary for Policy-Makers[C](2019).

    [18] EUSKIRCHEN E S, BRUHWILER L M, COMMANE R et al. Current knowledge and uncertainties associated with the Arctic greenhouse gas budget[J]. Balancing Greenhouse Gas Budgets, 159-201(2022).

    [19] WANNINKHOF R. Relationship between wind speed and gas exchange over the ocean revisited[J]. Limnology and Oceanography: Methods, 12, 351-62(2014).

    [20] COLE J J, CARACO N F. Atmospheric exchange of carbon dioxide in a low‐wind oligotrophic lake measured by the addition of SF6[J]. Limnology and Oceanography, 43, 647-56(1998).

    [21] METCALFE D B, HERMANS T D, AHLSTRAND J et al. Patchy field sampling biases understanding of climate change impacts across the Arctic[J]. Nature ecology & evolution, 2, 1443-8(2018).

    [22] LEFèVRE N, WATSON A J, WATSON A R. A comparison of multiple regression and neural network techniques for mapping in situ pCO2 data[J]. Tellus B: Chemical and Physical Meteorology, 57, 375-84(2005).

    [23] FRIEDRICH T, OSCHLIES A. Neural network‐based estimates of North Atlantic surface pCO2 from satellite data: A methodological study[J]. Journal of Geophysical Research: Oceans, 114(2009).

    [24] LANDSCHüTZER P, GRUBER N, BAKKER D C et al. A neural network-based estimate of the seasonal to inter-annual variability of the Atlantic Ocean carbon sink[J]. Biogeosciences, 10, 7793-815(2013).

    [25] S-I NAKAOKA, TELSZEWSKI M, NOJIRI Y et al. Estimating temporal and spatial variation of ocean surface pCO 2 in the North Pacific using a self-organizing map neural network technique[J]. Biogeosciences, 10, 6093-106(2013).

    [26] LARUELLE G G, LANDSCHüTZER P, GRUBER N et al. Global high-resolution monthly pCO2 climatology for the coastal ocean derived from neural network interpolation[J]. Biogeosciences, 14, 4545-61(2017).

    [27] DENVIL-SOMMER A, GEHLEN M, VRAC M et al. ffnn-lsce: a two-step neural network model for the reconstruction of surface ocean pco 2 over the global ocean[J]. Geoscientific Model Development(2019).

    [28] CHAU T T T, GEHLEN M, CHEVALLIER F. A seamless ensemble-based reconstruction of surface ocean pCO 2 and air–sea CO2 fluxes over the global coastal and open oceans[J]. Biogeosciences, 19, 1087-109(2022).

    [29] YASUNAKA S, MURATA A, WATANABE E et al. Mapping of the air–sea CO2 flux in the Arctic Ocean and its adjacent seas: Basin-wide distribution and seasonal to interannual variability[J]. Polar Science, 10, 323-34(2016).

    [30] YASUNAKA S, SISWANTO E, OLSEN A et al. Arctic Ocean CO2 uptake: an improved multiyear estimate of the air–sea CO2 flux incorporating chlorophyll a concentrations[J]. Biogeosciences, 15, 1643-61(2018).

    [31] BEHRENFELD M J, HU Y, O’MALLEY R T et al. Annual boom-bust cycles of polar phytoplankton biomass revealed by space-based lidar[J]. Nature Geoscience, 10, 118-22(2017).

    [32] LU X, HU Y, TREPTE C et al. Ocean subsurface studies with the CALIPSO spaceborne lidar[J]. Journal of Geophysical Research: Oceans, 119, 4305-17(2014).

    [33] LU X, HU Y, YANG Y et al. Antarctic spring ice-edge blooms observed from space by ICESat-2[J]. Remote Sensing of Environment, 111827(2020).

    [34] DIONISI DV.E., BRANDO G., VOLPE S., COLELLA AND R. SANTOLERI. Seasonal distributions of ocean particulate optical properties from spaceborne lidar measurements in Mediterranean and Black Sea[J]. Remote Sensing of Environment, 247(2020).

    [35] JAMET C, MJ B, AB D et al. Going Beyond Standard Ocean Color Observations: Lidar and Polarimetry[J]. Frontiers in Marine Science, 6, 251(2019).

    [36] HOSTETLER C A, BEHRENFELD M J, HU Y et al. Spaceborne Lidar in the Study of Marine Systems[J]. Annual Review of Marine Science, 10, 121-47(2018).

    [37] KIM M-H, OMAR A H, TACKETT J L et al. The CALIPSO version 4 automated aerosol classification and lidar ratio selection algorithm[J]. Atmospheric measurement techniques, 11, 6107-35(2018).

    [38] BEHRENFELD M, HU Y, BISSON K et al. Retrieval of ocean optical and plankton properties with the satellite Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) sensor: Background, data processing, and validation status[J]. Remote Sensing of Environment, 281, 113235(2022).

    [39] LU X, HU Y, VAUGHAN M et al. New attenuated backscatter profile by removing the CALIOP receiver's transient response[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 107244(2020).

    [40] ZHANG Z, CHEN P, JAMET C et al. Retrieving bbp and POC from CALIOP: A deep neural network approach[J]. Remote Sensing of Environment, 287, 113482(2023).

    [41] S-I AMARI, MURATA N, K-R MULLER et al. Asymptotic statistical theory of overtraining and cross-validation[J]. IEEE transactions on neural networks, 8, 985-96(1997).

    [42] ZHANG S, CHEN P, ZHANG Z et al. Carbon Air–Sea Flux in the Arctic Ocean from CALIPSO from 2007 to 2020[J]. Remote Sensing, 14, 6196(2022).

    [43] LANDSCHüTZER P, LARUELLE G G, ROOBAERT A et al. A uniform pCO2 climatology combining open and coastal oceans[J]. Earth Syst Sci Data, 12, 2537-53(2020).

    [44] CHAU T T T, GEHLEN M, CHEVALLIER F. A seamless ensemble-based reconstruction of surface ocean pCO2 and air–sea CO2 fluxes over the global coastal and open oceans[J]. Biogeosciences, 19, 1087-109(2022).

    [45] IIDA Y, TAKATANI Y, KOJIMA A et al. Global trends of ocean CO2 sink and ocean acidification: an observation-based reconstruction of surface ocean inorganic carbon variables[J]. Journal of Oceanography, 77, 323-58(2021).

    [47] BATES N R, MORAN S B, HANSELL D A et al. An increasing CO2 sink in the Arctic Ocean due to sea‐ice loss[J]. Geophysical Research Letters, 33(2006).

    [48] QI D, OUYANG Z, CHEN L et al. Climate change drives rapid decadal acidification in the Arctic Ocean from 1994 to 2020[J]. Science, 377, 1544-50(2022).

    Tools

    Get Citation

    Copy Citation Text

    Si-Qi ZHANG, Peng CHEN, Zhen-Hua ZHANG, De-Lu PAN. Arctic sea surface CO2 partial pressure based on LiDAR[J]. Journal of Infrared and Millimeter Waves, 2024, 43(3): 397

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Research Articles

    Received: Oct. 7, 2023

    Accepted: --

    Published Online: Apr. 29, 2024

    The Author Email: Peng CHEN (chenp@sio.org.cn)

    DOI:10.11972/j.issn.1001-9014.2024.03.014

    Topics