Journal of the Chinese Ceramic Society, Volume. 53, Issue 7, 1893(2025)

Structure and Dynamic Properties of Aqueous Electrolytes under Wide Temperature Range

LI Zhujie1,2, LIU Ruirui3, and LIU Xiaocun1,2
Author Affiliations
  • 1School of Civil Engineering, Shandong Jiaotong University, Jinan 250357, China
  • 2Shandong Key Laboratory of Technologies and Systems for Intelligent Construction Equipment, Jinan 250357, China
  • 3School of Rail Transportation, Shandong Jiaotong University, Jinan 250357, China
  • show less
    References(38)

    [1] [1] XU K. Electrolytes and interphases in Li-ion batteries and beyond[J]. Chem Rev, 2014, 114(23): 11503–11618.

    [2] [2] XIAO P T, YUN X R, CHEN Y F, et al. Insights into the solvation chemistry in liquid electrolytes for lithium-based rechargeable batteries[J]. Chem Soc Rev, 2023, 52(15): 5255–5316.

    [3] [3] WEI J, ZHANG P B, SUN J J, et al. Advanced electrolytes for high-performance aqueous zinc-ion batteries[J]. Chem Soc Rev, 2024, 53(20): 10335–10369.

    [4] [4] ZHANG S Q, LI R H, DENG T, et al. Oscillatory solvation chemistry for a 500 W·h·kg−1 Li-metal pouch cell[J]. Nat Energy, 2024, 9: 1285–1296.

    [5] [5] XIE H L, CHENG H R, KUMAR P, et al. Thermodynamic and kinetic behaviors of electrolytes mediated by intermolecular interactions enabling high-performance lithium-ion batteries[J]. ACS Nano, 2024, 18(33): 22503–22517.

    [6] [6] TRAN Y H T, AN K, VU D T T, et al. High-voltage electrolyte and interface design for mid-nickel high-energy Li-ion batteries[J]. ACS Energy Lett, 2025, 10(1): 356–370.

    [7] [7] HAN J, MARIANI A, PASSERINI S, et al. A perspective on the role of anions in highly concentrated aqueous electrolytes[J]. Energy Environ Sci, 2023, 16(4): 1480–1501.

    [8] [8] ZHANG H, LIN Y F, WANG J H. Design of localized high-concentration electrolytes from the perspective of physicochemical properties[J]. J Phys Chem Lett, 2024, 15(32): 8378–8386.

    [9] [9] BORODIN O, SELF J, PERSSON K A, et al. Uncharted waters: Super-concentrated electrolytes[J]. Joule, 2020, 4(1): 69–100.

    [10] [10] YAMADA Y, WANG J H, KO S, et al. Advances and issues in developing salt-concentrated battery electrolytes[J]. Nat Energy, 2019, 4: 269–280.

    [11] [11] SUO L M, BORODIN O, GAO T, et al. “Water-in-salt” electrolyte enables high-voltage aqueous lithium-ion chemistries[J]. Science, 2015, 350(6263): 938–943.

    [12] [12] YANG C Y, CHEN J, QING T T, et al. 4.0 V aqueous Li-ion batteries[J]. Joule, 2017, 1(1): 122–132.

    [13] [13] YAMADA Y, USUI K, SODEYAMA K, et al. Hydrate-melt electrolytes for high-energy-density aqueous batteries[J]. Nat Energy, 2016, 1(10): 16129.

    [14] [14] YANG C Y, CHEN J, JI X, et al. Aqueous Li-ion battery enabled by halogen conversion-intercalation chemistry in graphite[J]. Nature, 2019, 569(7755): 245–250.

    [15] [15] KIM J, KOO B, LIM J, et al. Dynamic water promotes lithium-ion transport in superconcentrated and eutectic aqueous electrolytes[J]. ACS Energy Lett, 2022, 7(1): 189–196.

    [16] [16] REBER D, BORODIN O, BECKER M, et al. Water/ionic liquid/succinonitrile hybrid electrolytes for aqueous batteries[J]. Adv Funct Mater, 2022, 32(20): 2112138.

    [17] [17] ZHU Y Y, ZHENG S H, LU P F, et al. Kinetic regulation of MXene with water-in-LiCl electrolyte for high-voltage micro-supercapacitors[J]. Natl Sci Rev, 2022, 9(7): nwac024.

    [18] [18] ZHOU A X, ZHANG J K, CHEN M, et al. An electric-field-reinforced hydrophobic cationic sieve lowers the concentration threshold of water-In-salt electrolytes[J]. Adv Mater, 2022, 34(47): 2207040.

    [19] [19] LI C C, ZHANG S Y, WANG Y F, et al. Dual breaking of ionic association in water-in-LiTFSI electrolyte for low temperature battery applications[J]. J Power Sources, 2022, 544: 231874.

    [20] [20] YUAN S, CAO S K, CHEN X, et al. Anion-modulated solvation sheath and electric double layer enabling lithium-ion storage from-60 to 80 ℃[J]. J Am Chem Soc, 2025, 147(5): 4089–4099.

    [21] [21] LI Z, WANG L, HUANG X D, et al. Lithium bis(trifluoromethanesulfonyl) imide (LiTFSI): A prominent lithium salt in lithium-ion battery electrolytes–fundamentals, progress, and future perspectives[J]. Adv Funct Mater, 2024, 34(48): 2408319.

    [22] [22] LIM J, PARK K, LEE H, et al. Nanometric water channels in water-in-salt lithium ion battery electrolyte[J]. J Am Chem Soc, 2018, 140(46): 15661–15667.

    [23] [23] LIU X Y, LEE S C, SEIFER S, et al. Insight into the nanostructure of “water in salt” solutions: A SAXS/WAXS study on imide-based lithium salts aqueous solutions[J]. Energy Storage Mater, 2022, 45: 696–703.

    [24] [24] LI Z J, JEANMAIRET G, MNDEZ-MORALES T, et al. Confinement effects on an electron transfer reaction in nanoporous carbon electrodes[J]. J Phys Chem Lett, 2017, 8(9): 1925–1931.

    [25] [25] LI Z J, JEANMAIRET G, MNDEZ-MORALES T, et al. Capacitive performance of water-in-salt electrolytes in supercapacitors: A simulation study[J]. J Phys Chem C, 2018, 122(42): 23917–23924.

    [26] [26] ZHANG Y, LEWIS N H C, MARS J, et al. Water-in-salt LiTFSI aqueous electrolytes. 1. liquid structure from combined molecular dynamics simulation and experimental studies[J]. J Phys Chem B, 2021, 125(17): 4501–4513.

    [27] [27] ZHANG Y, MAGINN E J. Water-In-salt LiTFSI aqueous electrolytes (2): Transport properties and Li+ dynamics based on molecular dynamics simulations[J]. J Phys Chem B, 2021, 125(48): 13246–13254.

    [28] [28] BORODIN O, SUO L M, GOBET M, et al. Liquid structure with nano-heterogeneity promotes cationic transport in concentrated electrolytes[J]. ACS Nano, 2017, 11(10): 10462–10471.

    [29] [29] THOMPSON A P, AKTULGA H M, BERGER R, et al. LAMMPS - a flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales[J]. Comput Phys Commun, 2022, 271: 108171.

    [30] [30] LI Z, BOUCHAL R, MENDEZ-MORALES T, et al. Transport properties of Li-TFSI water-in-salt electrolytes[J]. J Phys Chem B, 2019, 123(49): 10514–10521.

    [31] [31] BREHM M, KIRCHNER B. TRAVIS - a free analyzer and visualizer for Monte Carlo and molecular dynamics trajectories[J]. J Chem Inf Model, 2011, 51(8): 2007–2023.

    [32] [32] GEHRKE S, VON DOMAROS M, CLARK R, et al. Structure and lifetimes in ionic liquids and their mixtures[J]. Faraday Discuss, 2018, 206: 219–245.

    [33] [33] BREHM M, THOMAS M, GEHRKE S, et al. TRAVIS-a free analyzer for trajectories from molecular simulation[J]. J Chem Phys, 2020, 152(16): 164105.

    [34] [34] GOLOVIZNINA K, SERVA A, SALANNE M. Formation of polymer-like nanochains with short lithium-lithium distances in a water-in-salt electrolyte[J]. J Am Chem Soc, 2024, 146(12): 8142–8148.

    [35] [35] HAN S. Dynamic features of water molecules in superconcentrated aqueous electrolytes[J]. Sci Rep, 2018, 8(1): 9347.

    [36] [36] YUE J M, ZHANG J K, TONG Y X, et al. Aqueous interphase formed by CO2 brings electrolytes back to salt-in-water regime[J]. Nat Chem, 2021, 13(11): 1061–1069.

    [37] [37] LI L L, CHENG H R, ZHANG J L, et al. Quantitative chemistry in electrolyte solvation design for aqueous batteries[J]. ACS Energy Lett, 2023, 8(2): 1076–1095.

    [38] [38] TROJANOWSKI L, et al. Molecular origin of nanoscale anion ordering of LiTFSI electrolytes revealed through SAXS/WAXS and molecular dynamics simulations[J]. ACS Energy Lett, 2025, 10(2): 696–702.

    Tools

    Get Citation

    Copy Citation Text

    LI Zhujie, LIU Ruirui, LIU Xiaocun. Structure and Dynamic Properties of Aqueous Electrolytes under Wide Temperature Range[J]. Journal of the Chinese Ceramic Society, 2025, 53(7): 1893

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Special Issue:

    Received: Jan. 9, 2025

    Accepted: Aug. 12, 2025

    Published Online: Aug. 12, 2025

    The Author Email:

    DOI:10.14062/j.issn.0454-5648.20250018

    Topics