Journal of the Chinese Ceramic Society, Volume. 53, Issue 7, 1893(2025)
Structure and Dynamic Properties of Aqueous Electrolytes under Wide Temperature Range
[1] [1] XU K. Electrolytes and interphases in Li-ion batteries and beyond[J]. Chem Rev, 2014, 114(23): 11503–11618.
[2] [2] XIAO P T, YUN X R, CHEN Y F, et al. Insights into the solvation chemistry in liquid electrolytes for lithium-based rechargeable batteries[J]. Chem Soc Rev, 2023, 52(15): 5255–5316.
[3] [3] WEI J, ZHANG P B, SUN J J, et al. Advanced electrolytes for high-performance aqueous zinc-ion batteries[J]. Chem Soc Rev, 2024, 53(20): 10335–10369.
[4] [4] ZHANG S Q, LI R H, DENG T, et al. Oscillatory solvation chemistry for a 500 W·h·kg−1 Li-metal pouch cell[J]. Nat Energy, 2024, 9: 1285–1296.
[5] [5] XIE H L, CHENG H R, KUMAR P, et al. Thermodynamic and kinetic behaviors of electrolytes mediated by intermolecular interactions enabling high-performance lithium-ion batteries[J]. ACS Nano, 2024, 18(33): 22503–22517.
[6] [6] TRAN Y H T, AN K, VU D T T, et al. High-voltage electrolyte and interface design for mid-nickel high-energy Li-ion batteries[J]. ACS Energy Lett, 2025, 10(1): 356–370.
[7] [7] HAN J, MARIANI A, PASSERINI S, et al. A perspective on the role of anions in highly concentrated aqueous electrolytes[J]. Energy Environ Sci, 2023, 16(4): 1480–1501.
[8] [8] ZHANG H, LIN Y F, WANG J H. Design of localized high-concentration electrolytes from the perspective of physicochemical properties[J]. J Phys Chem Lett, 2024, 15(32): 8378–8386.
[9] [9] BORODIN O, SELF J, PERSSON K A, et al. Uncharted waters: Super-concentrated electrolytes[J]. Joule, 2020, 4(1): 69–100.
[10] [10] YAMADA Y, WANG J H, KO S, et al. Advances and issues in developing salt-concentrated battery electrolytes[J]. Nat Energy, 2019, 4: 269–280.
[11] [11] SUO L M, BORODIN O, GAO T, et al. “Water-in-salt” electrolyte enables high-voltage aqueous lithium-ion chemistries[J]. Science, 2015, 350(6263): 938–943.
[12] [12] YANG C Y, CHEN J, QING T T, et al. 4.0 V aqueous Li-ion batteries[J]. Joule, 2017, 1(1): 122–132.
[13] [13] YAMADA Y, USUI K, SODEYAMA K, et al. Hydrate-melt electrolytes for high-energy-density aqueous batteries[J]. Nat Energy, 2016, 1(10): 16129.
[14] [14] YANG C Y, CHEN J, JI X, et al. Aqueous Li-ion battery enabled by halogen conversion-intercalation chemistry in graphite[J]. Nature, 2019, 569(7755): 245–250.
[15] [15] KIM J, KOO B, LIM J, et al. Dynamic water promotes lithium-ion transport in superconcentrated and eutectic aqueous electrolytes[J]. ACS Energy Lett, 2022, 7(1): 189–196.
[16] [16] REBER D, BORODIN O, BECKER M, et al. Water/ionic liquid/succinonitrile hybrid electrolytes for aqueous batteries[J]. Adv Funct Mater, 2022, 32(20): 2112138.
[17] [17] ZHU Y Y, ZHENG S H, LU P F, et al. Kinetic regulation of MXene with water-in-LiCl electrolyte for high-voltage micro-supercapacitors[J]. Natl Sci Rev, 2022, 9(7): nwac024.
[18] [18] ZHOU A X, ZHANG J K, CHEN M, et al. An electric-field-reinforced hydrophobic cationic sieve lowers the concentration threshold of water-In-salt electrolytes[J]. Adv Mater, 2022, 34(47): 2207040.
[19] [19] LI C C, ZHANG S Y, WANG Y F, et al. Dual breaking of ionic association in water-in-LiTFSI electrolyte for low temperature battery applications[J]. J Power Sources, 2022, 544: 231874.
[20] [20] YUAN S, CAO S K, CHEN X, et al. Anion-modulated solvation sheath and electric double layer enabling lithium-ion storage from-60 to 80 ℃[J]. J Am Chem Soc, 2025, 147(5): 4089–4099.
[21] [21] LI Z, WANG L, HUANG X D, et al. Lithium bis(trifluoromethanesulfonyl) imide (LiTFSI): A prominent lithium salt in lithium-ion battery electrolytes–fundamentals, progress, and future perspectives[J]. Adv Funct Mater, 2024, 34(48): 2408319.
[22] [22] LIM J, PARK K, LEE H, et al. Nanometric water channels in water-in-salt lithium ion battery electrolyte[J]. J Am Chem Soc, 2018, 140(46): 15661–15667.
[23] [23] LIU X Y, LEE S C, SEIFER S, et al. Insight into the nanostructure of “water in salt” solutions: A SAXS/WAXS study on imide-based lithium salts aqueous solutions[J]. Energy Storage Mater, 2022, 45: 696–703.
[24] [24] LI Z J, JEANMAIRET G, MNDEZ-MORALES T, et al. Confinement effects on an electron transfer reaction in nanoporous carbon electrodes[J]. J Phys Chem Lett, 2017, 8(9): 1925–1931.
[25] [25] LI Z J, JEANMAIRET G, MNDEZ-MORALES T, et al. Capacitive performance of water-in-salt electrolytes in supercapacitors: A simulation study[J]. J Phys Chem C, 2018, 122(42): 23917–23924.
[26] [26] ZHANG Y, LEWIS N H C, MARS J, et al. Water-in-salt LiTFSI aqueous electrolytes. 1. liquid structure from combined molecular dynamics simulation and experimental studies[J]. J Phys Chem B, 2021, 125(17): 4501–4513.
[27] [27] ZHANG Y, MAGINN E J. Water-In-salt LiTFSI aqueous electrolytes (2): Transport properties and Li+ dynamics based on molecular dynamics simulations[J]. J Phys Chem B, 2021, 125(48): 13246–13254.
[28] [28] BORODIN O, SUO L M, GOBET M, et al. Liquid structure with nano-heterogeneity promotes cationic transport in concentrated electrolytes[J]. ACS Nano, 2017, 11(10): 10462–10471.
[29] [29] THOMPSON A P, AKTULGA H M, BERGER R, et al. LAMMPS - a flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales[J]. Comput Phys Commun, 2022, 271: 108171.
[30] [30] LI Z, BOUCHAL R, MENDEZ-MORALES T, et al. Transport properties of Li-TFSI water-in-salt electrolytes[J]. J Phys Chem B, 2019, 123(49): 10514–10521.
[31] [31] BREHM M, KIRCHNER B. TRAVIS - a free analyzer and visualizer for Monte Carlo and molecular dynamics trajectories[J]. J Chem Inf Model, 2011, 51(8): 2007–2023.
[32] [32] GEHRKE S, VON DOMAROS M, CLARK R, et al. Structure and lifetimes in ionic liquids and their mixtures[J]. Faraday Discuss, 2018, 206: 219–245.
[33] [33] BREHM M, THOMAS M, GEHRKE S, et al. TRAVIS-a free analyzer for trajectories from molecular simulation[J]. J Chem Phys, 2020, 152(16): 164105.
[34] [34] GOLOVIZNINA K, SERVA A, SALANNE M. Formation of polymer-like nanochains with short lithium-lithium distances in a water-in-salt electrolyte[J]. J Am Chem Soc, 2024, 146(12): 8142–8148.
[35] [35] HAN S. Dynamic features of water molecules in superconcentrated aqueous electrolytes[J]. Sci Rep, 2018, 8(1): 9347.
[36] [36] YUE J M, ZHANG J K, TONG Y X, et al. Aqueous interphase formed by CO2 brings electrolytes back to salt-in-water regime[J]. Nat Chem, 2021, 13(11): 1061–1069.
[37] [37] LI L L, CHENG H R, ZHANG J L, et al. Quantitative chemistry in electrolyte solvation design for aqueous batteries[J]. ACS Energy Lett, 2023, 8(2): 1076–1095.
[38] [38] TROJANOWSKI L, et al. Molecular origin of nanoscale anion ordering of LiTFSI electrolytes revealed through SAXS/WAXS and molecular dynamics simulations[J]. ACS Energy Lett, 2025, 10(2): 696–702.
Get Citation
Copy Citation Text
LI Zhujie, LIU Ruirui, LIU Xiaocun. Structure and Dynamic Properties of Aqueous Electrolytes under Wide Temperature Range[J]. Journal of the Chinese Ceramic Society, 2025, 53(7): 1893
Special Issue:
Received: Jan. 9, 2025
Accepted: Aug. 12, 2025
Published Online: Aug. 12, 2025
The Author Email: