Acta Photonica Sinica, Volume. 53, Issue 7, 0753301(2024)
Polarization Photodetector Based on van der Waals Materials and Performance Enhancement Strategies (Invited)
[1] DRIGGERS R G[M]. Encyclopedia of optical engineering(2003).
[2] TYO J S, GOLDSTEIN D L, CHENAULT D B et al. Review of passive imaging polarimetry for remote sensing applications[J]. Applied Optics, 45, 5453-5469(2006).
[3] DORADLA P, ALAVI K, JOSEPH C et al. Detection of colon cancer by continuous-wave terahertz polarization imaging technique[J]. Journal of Biomedical Optics, 18, 090504(2013).
[4] HUARD S J. Polarization of light[M]. Wiley-VCH(1997).
[5] AZZAM R M A. Division-of-amplitude Photopolarimeter (DOAP) for the simultaneous measurement of all four stokes parameters of light[J]. Optica Acta: International Journal of Optics, 29, 685-689(1982).
[6] JIANG Huilin, FU Qiang, DUAN Jin et al. Research on infrared polarization imaging detection technology and application[J]. Infrared Technology, 36, 345-349(2014).
[7] CAO Y, FATEMI V, FANG S et al. Unconventional superconductivity in magic-angle graphene superlattices[J]. Nature, 556, 43-50(2018).
[8] WEI J, LI Y, WANG L et al. Zero-bias mid-infrared graphene photodetectors with bulk photoresponse and calibration-free polarization detection[J]. Nature Communications, 11, 6404(2020).
[9] AKAMATSU T, IDEUE T, ZHOU L et al. A van der Waals interface that creates in-plane polarization and a spontaneous photovoltaic effect[J]. Science, 372, 68-72(2021).
[10] WU S, CHEN Y, WANG X et al. Ultra-sensitive polarization-resolved black phosphorus homojunction photodetector defined by ferroelectric domains[J]. Nature Communications, 13, 3198(2022).
[11] WANG J, GUDIKSEN M S, DUAN X et al. Highly polarized photoluminescence and photodetection from single indium phosphide nanowires[J]. Science, 293, 1455-1457(2001).
[12] NOVOSELOV K S, GEIM A K, MOROZOV S V et al. Electric field effect in atomically thin carbon films[J]. Science, 306, 666-669(2004).
[13] YUAN H, LIU X, AFSHINMANESH F et al. Polarization-sensitive broadband photodetector using a black phosphorus vertical p-n junction[J]. Nature Nanotechnology, 10, 707-713(2015).
[14] WEI Zhongming, XIA Jianbai. Recent progress in polarization-sensitive photodetectors based on low-dimensional semiconductors[J]. Acta Physica Sinica, 68, 163201(2019).
[15] ZHOU Z Q, CUI Y, TAN P H et al. Optical and electrical properties of two-dimensional anisotropic materials[J]. Journal of Semiconductors, 40, 061001(2019).
[16] LI L, HAN W, PI L J et al. Emerging in-plane anisotropic two-dimensional materials[J]. Infomat, 1, 54-73(2019).
[17] BOLOTIN K I, SIKES K J, JIANG Z et al. Ultrahigh electron mobility in suspended graphene[J]. Solid State Communications, 146, 351-355(2008).
[18] JANISCH C, SONG H, ZHOU C et al. MoS2 monolayers on nanocavities: enhancement in light-matter interaction[J]. 2d Materials, 3, 025017(2016).
[19] XIA F N, WANG H, JIA Y C. Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics[J]. Nature Communications, 5, 4458(2014).
[20] QIAO J S, KONG X H, HU Z X et al. High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus[J]. Nature Communications, 5, 4475(2014).
[21] LUO Z, MAASSEN J, DENG Y X et al. Anisotropic in-plane thermal conductivity observed in few-layer black phosphorus[J]. Nature Communications, 6, 8572(2015).
[22] NOVOSELOV K S, MISHCHENKO A, CARVALHO A et al. 2D materials and van der Waals heterostructures[J]. Science, 353, aac9439(2016).
[23] LIU Y, WEISS N O, DUAN X D et al. Van der Waals heterostructures and devices[J]. Nature Reviews Materials, 1, 16042(2016).
[24] LIU Y, HUANG Y, DUAN X F. Van der Waals integration before and beyond two-dimensional materials[J]. Nature, 567, 323-333(2019).
[25] CASTRO NETO A H, GUINEA F, PERES N M R et al. The electronic properties of graphene[J]. Reviews of Modern Physics, 81, 109-162(2009).
[26] LI L, YU Y, YE G J et al. Black phosphorus field-effect transistors[J]. Nature Nanotechnology, 9, 372-377(2014).
[27] CHEN Y, CHEN C, KEALHOFER R et al. Black arsenic: a layered semiconductor with extreme in-plane anisotropy[J]. Advanced Materials, 30, 1800754(2018).
[28] GAO S, SUN C, ZHANG X. Ultra-strong anisotropic photo-responsivity of bilayer tellurene: a quantum transport and time-domain first principle study[J]. Nanophotonics, 9, 1931-1940(2020).
[29] XIA F, WANG H, JIA Y. Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics[J]. Nature Communications, 5, 4458(2014).
[30] TIAN Z, GUO C, ZHAO M et al. Two-dimensional SnS: a phosphorene analogue with strong in-plane electronic anisotropy[J]. ACS Nano, 11, 2219-2226(2017).
[31] SHI W, GAO M, WEI J et al. Tin Selenide (SnSe): growth, properties, and applications[J]. Advanced Science, 5, 1700602(2018).
[32] LI Z, YANG Y, WANG X et al. Three-dimensional optical anisotropy of low-symmetry layered GeS[J]. ACS Applied Materials & Interfaces, 11, 24247-24253(2019).
[33] ZHOU X, HU X, JIN B et al. Highly anisotropic GeSe nanosheets for phototransistors with ultrahigh photoresponsivity[J]. Advanced Science, 5, 1800478(2018).
[34] LIN Y C, KOMSA H P, YEH C H et al. Single-layer ReS2: two-dimensional semiconductor with tunable in-plane anisotropy[J]. ACS Nano, 9, 11249-11257(2015).
[35] ZHANG E, WANG P, LI Z et al. Tunable ambipolar polarization-sensitive photodetectors based on high-anisotropy ReSe2 nanosheets[J]. ACS Nano, 10, 8067-8077(2016).
[36] ZHOU W, CHEN J, GAO H et al. Anomalous and polarization-sensitive photoresponse of Td-WTe2 from visible to infrared light[J]. Advanced Materials, 31, 1804629(2019).
[37] LAI J, LIU Y, MA J et al. Broadband anisotropic photoresponse of the "hydrogen atom" version type-II Weyl semimetal candidate TaIrTe4[J]. ACS Nano, 12, 4055-4061(2018).
[38] HUANG S, TATSUMI Y, LING X et al. In-plane optical anisotropy of layered gallium telluride[J]. ACS Nano, 10, 8964-8972(2016).
[39] HOU S, GUO Z, XIONG T et al. Optical and electronic anisotropy of a 2D semiconductor SiP[J]. Nano Research, 15, 8579-8586(2022).
[40] LI L, WANG W, GONG P et al. 2D GeP: An unexploited low-symmetry semiconductor with strong in-plane anisotropy[J]. Advanced Materials, 30, 1706771(2018).
[41] KIM D, PARK K, LEE J H et al. Anisotropic 2D SiAs for high-performance UV-visible photodetectors[J]. Small, 17, 2006310(2021).
[42] ZHOU Z, LONG M, PAN L et al. Perpendicular optical reversal of the linear dichroism and polarized photodetection in 2D GeAs[J]. ACS Nano, 12, 12416-12423(2018).
[43] TIAN N, YANG Y, LIU D et al. High anisotropy in tubular layered exfoliated KP15[J]. ACS Nano, 12, 1712-1719(2018).
[44] YANG S, HU C, WU M et al. In-plane optical anisotropy and linear dichroism in low-symmetry layered TlSe[J]. ACS Nano, 12, 8798-8807(2018).
[45] NIU Y, FRISENDA R, FLORES E et al. Polarization-sensitive and broadband photodetection based on a mixed-dimensionality TiS3/Si p-n junction[J]. Advanced Optical Materials, 6, 1800351(2018).
[46] LIU S, XIAO W, ZHONG M et al. Highly polarization sensitive photodetectors based on quasi-1D titanium trisulfide (TiS3)[J]. Nanotechnology, 29, 184002(2018).
[47] TALI S A S, ZHOU W. Multiresonant plasmonics with spatial mode overlap: overview and outlook[J]. Nanophotonics, 8, 1199-1225(2019).
[48] ZHA J, LUO M, YE M et al. Infrared photodetectors based on 2D materials and nanophotonics[J]. Advanced Functional Materials, 32, 2111970(2022).
[49] HUANG J A, LUO L B. Low-dimensional plasmonic photodetectors: recent progress and future opportunities[J]. Advanced Optical Materials, 6, 1701282(2018).
[50] WANG L, HASANZADEH KAFSHGARI M, MEUNIER M. Optical properties and applications of plasmonic-metal nanoparticles[J]. Advanced Functional Materials, 30, 2005400(2020).
[51] TONG J, SUO F, MA J et al. Surface plasmon enhanced infrared photodetection[J]. Opto-Electronic Advances, 2, 180026(2019).
[52] HE Weidi, SU Dan, WANG Shanjiang et al. Progress of surface plasmon nanostructure enhanced photodetector (invited)[J]. Infrared and Laser Engineering, 50, 20211014(2021).
[53] AFSHINMANESH F, WHITE J S, CAI W et al. Measurement of the polarization state of light using an integrated plasmonic polarimeter[J]. Nanophotonics, 1, 125-129(2012).
[54] HU H, YANG X, GUO X et al. Gas identification with graphene plasmons[J]. Nature Communications, 10, 1131(2019).
[55] DAI M, WANG C, QIANG B et al. Long-wave infrared photothermoelectric detectors with ultrahigh polarization sensitivity[J]. Nature Communications, 14, 3421(2023).
[56] WANG J, JIANG C, LI W et al. Anisotropic low‐dimensional materials for polarization‐sensitive photodetectors: from materials to devices[J]. Advanced Optical Materials, 10, 2102436(2022).
[57] MIRZAEE S M A, LEBEL O, NUNZI J M. Simple unbiased hot-electron polarization-sensitive near-infrared photodetector[J]. ACS Applied Materials & Interfaces, 10, 11862-11871(2018).
[58] ZHOU S, CHEN K, GUO X et al. Antenna-coupled vacuum channel nano-diode with high quantum efficiency[J]. Nanoscale, 12, 1495-1499(2020).
[59] WEI J, CHEN Y, LI Y et al. Geometric filterless photodetectors for mid-infrared spin light[J]. Nature Photonics, 171-178(2022).
[60] CAKMAKYAPAN S, LU P K, NAVABI A et al. Gold-patched graphene nano-stripes for high-responsivity and ultrafast photodetection from the visible to infrared regime[J]. Light: Science & Applications, 7, 20(2018).
[61] GUO Q S, YU R W, LI C et al. Efficient electrical detection of mid-infrared graphene plasmons at room temperature[J]. Nature Materials, 17, 986-992(2018).
[62] CASTILLA S, VANGELIDIS I, PUSAPATI V V et al. Plasmonic antenna coupling to hyperbolic phonon-polaritons for sensitive and fast mid-infrared photodetection with graphene[J]. Nature Communications, 11, 4872(2020).
[63] VENUTHURUMILLI P K, YE P D, XU X. Plasmonic resonance enhanced polarization-sensitive photodetection by black phosphorus in near infrared[J]. ACS Nano, 12, 4861-4867(2018).
[64] WANG M, HUANG Z, SALUT R et al. Plasmonic helical nanoantenna as a converter between longitudinal fields and circularly polarized waves[J]. Nano Letters, 21, 3410-3417(2021).
[65] DAI M, WANG C, QIANG B et al. On-chip mid-infrared photothermoelectric detectors for full-Stokes detection[J]. Nature Communications, 13, 4560(2022).
[66] LI W, COPPENS Z J, BESTEIRO L V et al. Circularly polarized light detection with hot electrons in chiral plasmonic metamaterials[J]. Nature Communications, 6, 8379(2015).
[67] WEI J, XU C, DONG B et al. Mid-infrared semimetal polarization detectors with configurable polarity transition[J]. Nature Photonics, 15, 614-621(2021).
[68] DING Jiahui, ZHU Yushan, LIU Zijia et al. Recent advances in two-dimensional ferroelectric materials[J]. Chinese Science Bulletin, 68, 4103-4118(2023).
[69] XU Hangyu, WANG Peng, CHEN Xiaoshuang et al. Research progress of two-dimensional semiconductor infrared photodetector (invited)[J]. Infrared and Laser Engineering, 50, 20211017(2021).
[70] IQBAL M A, XIE H, QI L et al. Recent advances in ferroelectric-enhanced low-dimensional optoelectronic devices[J]. Small, 19, e2205347(2023).
[71] TANG Y L, ZHU Y L, MA X L et al. Observation of a periodic array of flux-closure quadrants in strained ferroelectric PbTiO3 films[J]. Science, 348, 547-551(2015).
[72] LI F, JIN L, XU Z et al. Electrostrictive effect in ferroelectrics: an alternative approach to improve piezoelectricity[J]. Applied Physics Reviews, 1, 011103(2014).
[73] LIAO WQ, ZHANG Y, HU C L et al. A lead-halide perovskite molecular ferroelectric semiconductor[J]. Nature Communications, 6, 7338(2015).
[74] MARTINS P, LOPES A C, LANCEROS-MENDEZ S. Electroactive phases of poly(vinylidene fluoride): Determination, processing and applications[J]. Progress in Polymer Science, 39, 683-706(2014).
[75] WANG X, WANG P, WANG J et al. Ultrasensitive and broadband MoS2 photodetector driven by ferroelectrics[J]. Advanced Materials, 27, 6575-6581(2015).
[76] ZHOU Y, WU D, ZHU Y et al. Out-of-plane piezoelectricity and ferroelectricity in layered α-In2Se3 nanoflakes[J]. Nano Letters, 17, 5508-5513(2017).
[77] CUI C, HU W J, YAN X et al. Intercorrelated in-plane and out-of-plane ferroelectricity in ultrathin two-dimensional layered semiconductor In2Se3[J]. Nano Letters, 18, 1253-1258(2018).
[78] WAN S, LI Y, LI W et al. Room-temperature ferroelectricity and a switchable diode effect in two-dimensional α-In2Se3 thin layers[J]. Nanoscale, 10, 14885-14892(2018).
[79] SI M, SAHA A K, GAO S et al. A ferroelectric semiconductor field-effect transistor[J]. Nature Electronics, 2, 580-586(2019).
[80] YU Chenhui, SHEN Niming, ZHOU Yong et al. Research progress on ferroelectric localized field-enhanced low-dimensional material-based photodetectors (invited)[J]. Infrared and Laser Engineering, 51, 20220288(2022).
[81] LI L, LIU X, LI Y et al. Two-dimensional hybrid perovskite-type ferroelectric for highly polarization-sensitive shortwave photodetection[J]. J Journal of the American Chemical Society, 141, 2623-2629(2019).
[82] YAN J M, YING J S, YAN M Y et al. Optoelectronic coincidence detection with two‐dimensional bi2o2se ferroelectric field‐effect transistors[J]. Advanced Functional Materials, 31, 2103982(2021).
[83] BAI Y, JANTUNEN H, JUUTI J. Ferroelectric oxides for solar energy conversion, multi-source energy harvesting/sensing, and opto-ferroelectric applications[J]. ChemSusChem, 12, 2540-2549(2019).
[84] CHEN Y, WANG X, HUANG L et al. Ferroelectric-tuned van der Waals heterojunction with band alignment evolution[J]. Nature Communications, 12, 4030(2021).
[85] BANERJEE W, KASHIR A, KAMBA S. Hafnium Oxide (HfO2)-a multifunctional oxide: a review on the prospect and challenges of hafnium oxide in resistive switching and ferroelectric memories[J]. Small, 18, 2107575(2022).
[86] JI C, DEY D, PENG Y et al. Ferroelectricity-driven self-powered ultraviolet photodetection with strong polarization sensitivity in a two-dimensional halide hybrid perovskite[J]. Angewandte Chemie-International Edition, 59, 18933-18937(2020).
[87] YANKOWITZ M, CHEN S, POLSHYN H et al. Tuning superconductivity in twisted bilayer graphene[J]. Science, 363, 1059-1064(2019).
[88] HAO Z, ZIMMERMAN A M, LEDWITH P et al. Electric field-tunable superconductivity in alternating-twist magic-angle trilayer graphene[J]. Science, 371, 1133-1138(2021).
[89] JIANG Y, LAI X, WATANABE K et al. Charge order and broken rotational symmetry in magic-angle twisted bilayer graphene[J]. Nature, 573, 91-95(2019).
[90] KERELSKY A, MCGILLY L J, KENNES D M et al. Maximized electron interactions at the magic angle in twisted bilayer graphene[J]. Nature, 572, 95-100(2019).
[91] XIE Y, LIAN B, JACK B et al. Spectroscopic signatures of many-body correlations in magic-angle twisted bilayer graphene[J]. Nature, 572, 101-105(2019).
[92] FALSON J, XU Y, LIAO M et al. Type-II Ising pairing in few-layer stanene[J]. Science, 367, 1454-1457(2020).
[93] JIAO L, HOWARD S, RAN S et al. Chiral superconductivity in heavy-fermion metal UTe2[J]. Nature, 579, 523-527(2020).
[94] SOLÍS-FERNÁNDEZ P, TERAO Y, KAWAHARA K et al. Isothermal growth and stacking evolution in highly uniform bernal-stacked bilayer graphene[J]. ACS Nano, 14, 6834-6844(2020).
[95] CAO Y, FATEMI V, DEMIR A et al. Correlated insulator behaviour at half-filling in magic-angle graphene superlattices[J]. Nature, 556, 80-84(2018).
[96] LI G, LUICAN A, LOPES DOS SANTOS J M B et al. Observation of Van Hove singularities in twisted graphene layers[J]. Nature Physics, 6, 109-113(2010).
[97] CAO T, LI Z L, QIU D Y et al. Gate switchable transport and optical anisotropy in 90° twisted bilayer black phosphorus[J]. Nano Letters, 16, 5542-5546(2016).
[98] XIN W, LI X K, HE X L et al. Black-phosphorus-based orientation-induced diodes[J]. Advanced Materials, 30, 1704653(2018).
[99] WU B, ZHENG H, LI S et al. Evidence for moire intralayer excitons in twisted WSe2/WSe2 homobilayer superlattices[J]. Light: Science & Applications, 11, 166(2022).
[100] MA C, YUAN S, CHEUNG P et al. Intelligent infrared sensing enabled by tunable moire quantum geometry[J]. Nature, 604, 266-272(2022).
[101] DUAN S, QIN F, CHEN P et al. Berry curvature dipole generation and helicity-to-spin conversion at symmetry-mismatched heterointerfaces[J]. Nature Nanotechnology, 18, 867-874(2023).
[102] LI Z, HUANG J, ZHOU L et al. An anisotropic van der Waals dielectric for symmetry engineering in functionalized heterointerfaces[J]. Nature Communications, 14, 5568(2023).
[103] ZHANG W, HONG M, LUO J. Centimeter-sized single crystal of a one-dimensional lead-free mixed-cation perovskite ferroelectric for highly polarization sensitive photodetection[J]. Journal of the American Chemical Society, 143, 16758-16767(2021).
[104] WANG J, LIU Y, HAN S et al. Ultrasensitive polarized-light photodetectors based on 2D hybrid perovskite ferroelectric crystals with a low detection limit[J]. Science Bulletin, 66, 158-163(2021).
[105] ZENG L H, CHEN Q M, ZHANG Z X et al. Multilayered PdSe2/Perovskite Schottky junction for fast, self-powered, polarization-sensitive, broadband photodetectors, and image sensor application[J]. Advanced Science, 6, 1901134(2019).
[106] AGARWAL H, NOWAKOWSKI K, FORRER A et al. Ultra-broadband photoconductivity in twisted graphene heterostructures with large responsivity[J]. Nature Photonics, 17, 1047-1053(2023).
Get Citation
Copy Citation Text
Jing WANG, Hanxue JIAO, Yan CHEN, Shuaiqin WU, Xudong WANG, Shukui ZHANG, Junhao CHU, Jianlu WANG. Polarization Photodetector Based on van der Waals Materials and Performance Enhancement Strategies (Invited)[J]. Acta Photonica Sinica, 2024, 53(7): 0753301
Category: Special Issue for Ultrafast Optics
Received: Apr. 1, 2024
Accepted: May. 17, 2024
Published Online: Aug. 12, 2024
The Author Email: Hanxue JIAO (jiaohanxue@fudan.edu.cn), Yan CHEN (yanchen_@fudan.edu.cn)