Photonics Research, Volume. 9, Issue 7, 1391(2021)
Ultrabroadband microwave absorber based on 3D water microchannels
[1] E. F. Knott, J. F. Shaeffer, M. T. Tuley. Radar Cross Section(2004).
[2] D. D. L. Chung. EM interference shielding effectiveness of carbon materials. Carbon, 39, 279-285(2001).
[3] T. S. Almoneef, F. Erkmen, O. M. Ramahi. Harvesting the energy of multi-polarized electromagnetic waves. Sci. Rep., 7, 14656(2017).
[4] Z. Jiang, S. Yun, F. Toor, D. Werner, T. S. Mayer. Conformal dual-band near-perfectly absorbing mid-infrared metamaterial coating. ACS Nano, 5, 4641-4647(2011).
[5] A. K. Moridani, R. Zando, W. Xie, I. Howell, J. Watkins, J. Lee. Plasmonic thermal emitters for dynamically tunable infrared radiation. Adv. Opt. Mater., 5, 1600993(2017).
[6] L. Lei, F. Lou, K. Tao, H. Huang, X. Cheng, X. Ping. Tunable and scalable broadband metamaterial absorber involving VO2-based phase transition. Photon. Res., 7, 734-741(2019).
[7] A. Tuniz, K. J. Kaltenecker, B. M. Fischer, M. Walther, S. C. Fleming, A. Argyros, B. T. Kuhlmey. Metamaterial fibres for subdiffraction imaging and focusing at terahertz frequencies over optically long distances. Nat. Commun., 4, 2706(2013).
[8] J. L. Wallace. Broadband magnetic microwave absorbers: fundamental limitations. IEEE Trans. Magn., 29, 4209-4214(1993).
[9] N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, W. J. Padilla. Perfect metamaterial absorber. Phys. Rev. Lett., 100, 207402(2008).
[10] Y. Pang, J. Wang, H. Ma, M. Feng, Y. Li, Z. Xu, S. Xia, S. Qu. Spatial k-dispersion engineering of spoof surface plasmon polaritons for customized absorption. Sci. Rep., 6, 29429(2016).
[11] Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, N. X. Fang. Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab. Nano Lett., 12, 1443-1447(2012).
[12] B. Zhu, Z. Wang, C. Huang, Y. Feng, J. Zhao, T. Jiang. Polarization insensitive metamaterial absorber with wide incident angle. Prog. Electromagn. Res., 101, 231-239(2010).
[13] C. Zhang, J. Yang, W. Cao, W. Yuan, J. Ke, L. Yang, Q. Cheng, T. Cui. Transparently curved metamaterial with broadband millimeter wave absorption. Photon. Res., 7, 478-485(2019).
[14] J. Zhao, S. Wei, C. Wang, K. Chen, B. Zhu, T. Jiang, Y. Feng. Broadband microwave absorption utilizing water-based metamaterial structures. Opt. Express, 26, 8522-8531(2018).
[15] A. Andryieuski, S. Kuznetsova, S. Zhukovsky, Y. Kivshar, A. Lavrinenko. Water: promising opportunities for tunable all-dielectric electromagnetic metamaterials. Sci. Rep., 5, 13535(2015).
[16] Y. J. Yoo, S. Ju, S. Y. Park, Y. J. Kim, J. Bong, T. Lim, K. W. Kim, J. Y. Rhee, Y. P. Lee. Metamaterial absorber for electromagnetic waves in periodic water droplets. Sci. Rep., 5, 14018(2015).
[17] Y. Pang, J. Wang, Q. Cheng, S. Xia, S. Qu. Thermally tunable water-substrate broadband metamaterial absorbers. Appl. Phys. Lett., 110, 104103(2017).
[18] X. Zhang, D. Zhang, Y. Fu, S. Li, Y. Wei, K. Chen, X. Wang, S. Zhuang. 3D printed swastika shape ultra-broadband water-based microwave absorber. IEEE Antennas Wireless Propag. Lett., 19, 821-825(2020).
[19] Y. Youngseo, L. Daecheon, M. M. Tentzeris, L. Sungjoon. Low-cost metamaterial absorber using three-dimensional circular truncated cone. Microw. Opt. Technol. Lett., 60, 1622-1630(2018).
[20] W. J. Ellison. Permittivity of pure water, at standard atmospheric pressure, over the frequency range 0–25 THz and the temperature range 0–100°C. J. Phys. Chem. Ref. Data, 36, 1-18(2007).
[21] J. Xie, S. Quader, F. Xiao, C. He, I. D. Rukhlenko. Truly all-dielectric ultra-broadband metamaterial absorber: water-based and ground-free. IEEE Antennas Wireless Propag., 18, 536-540(2019).
[22] H. T. Chen. Interference theory of metamaterial perfect absorbers. Opt. Express, 20, 7165-7172(2012).
[23] H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, R. D. Averitt. Highly flexible wide angle of incidence terahertz metamaterial absorber: design, fabrication, and characterization. Phys. Rev. B, 78, 241103(2008).
[24] H. Kwon, G. D’Aguanno, A. Alu. Optically transparent microwave absorber based on water-based moth-eye structures. Opt. Express, 29, 9190-9198(2021).
[25] R. Jian, Y. Yuan. Cylindrical-water-resonator-based ultra-broadband microwave absorber. Opt. Mater. Express, 8, 2060-2071(2018).
[26] H. Xiong, F. Yang. Ultra-broadband and tunable saline water-based absorber in microwave regime. Opt. Express, 28, 5306-5316(2020).
[27] Y. Zhou, Z. Shen, J. Wu, Y. Zhang, S. Huang, H. Yang. Design of ultra-wideband and near-unity absorption water-based metamaterial absorber. Appl. Phys. A, 126, 52(2020).
Get Citation
Copy Citation Text
Yan Chen, Kejian Chen, Dajun Zhang, Shihao Li, Yeli Xu, Xiong Wang, Songlin Zhuang, "Ultrabroadband microwave absorber based on 3D water microchannels," Photonics Res. 9, 1391 (2021)
Category: Physical Optics
Received: Feb. 18, 2021
Accepted: May. 12, 2021
Published Online: Jul. 2, 2021
The Author Email: Kejian Chen (ee.kjchen@gmail.com)