Photonics Research, Volume. 9, Issue 7, 1391(2021)

Ultrabroadband microwave absorber based on 3D water microchannels

Yan Chen1, Kejian Chen1、*, Dajun Zhang2, Shihao Li1, Yeli Xu1, Xiong Wang2, and Songlin Zhuang1
Author Affiliations
  • 1Shanghai Key Laboratory of Modern Optical System, Engineering Research Center of Optical Instrument and System, Ministry of Education, University of Shanghai for Science and Technology, Shanghai 200093, China
  • 2School of Information Science and Technology, ShanghaiTech University, Shanghai 201210, China
  • show less
    References(27)

    [1] E. F. Knott, J. F. Shaeffer, M. T. Tuley. Radar Cross Section(2004).

    [2] D. D. L. Chung. EM interference shielding effectiveness of carbon materials. Carbon, 39, 279-285(2001).

    [3] T. S. Almoneef, F. Erkmen, O. M. Ramahi. Harvesting the energy of multi-polarized electromagnetic waves. Sci. Rep., 7, 14656(2017).

    [4] Z. Jiang, S. Yun, F. Toor, D. Werner, T. S. Mayer. Conformal dual-band near-perfectly absorbing mid-infrared metamaterial coating. ACS Nano, 5, 4641-4647(2011).

    [5] A. K. Moridani, R. Zando, W. Xie, I. Howell, J. Watkins, J. Lee. Plasmonic thermal emitters for dynamically tunable infrared radiation. Adv. Opt. Mater., 5, 1600993(2017).

    [6] L. Lei, F. Lou, K. Tao, H. Huang, X. Cheng, X. Ping. Tunable and scalable broadband metamaterial absorber involving VO2-based phase transition. Photon. Res., 7, 734-741(2019).

    [7] A. Tuniz, K. J. Kaltenecker, B. M. Fischer, M. Walther, S. C. Fleming, A. Argyros, B. T. Kuhlmey. Metamaterial fibres for subdiffraction imaging and focusing at terahertz frequencies over optically long distances. Nat. Commun., 4, 2706(2013).

    [8] J. L. Wallace. Broadband magnetic microwave absorbers: fundamental limitations. IEEE Trans. Magn., 29, 4209-4214(1993).

    [9] N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, W. J. Padilla. Perfect metamaterial absorber. Phys. Rev. Lett., 100, 207402(2008).

    [10] Y. Pang, J. Wang, H. Ma, M. Feng, Y. Li, Z. Xu, S. Xia, S. Qu. Spatial k-dispersion engineering of spoof surface plasmon polaritons for customized absorption. Sci. Rep., 6, 29429(2016).

    [11] Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, N. X. Fang. Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab. Nano Lett., 12, 1443-1447(2012).

    [12] B. Zhu, Z. Wang, C. Huang, Y. Feng, J. Zhao, T. Jiang. Polarization insensitive metamaterial absorber with wide incident angle. Prog. Electromagn. Res., 101, 231-239(2010).

    [13] C. Zhang, J. Yang, W. Cao, W. Yuan, J. Ke, L. Yang, Q. Cheng, T. Cui. Transparently curved metamaterial with broadband millimeter wave absorption. Photon. Res., 7, 478-485(2019).

    [14] J. Zhao, S. Wei, C. Wang, K. Chen, B. Zhu, T. Jiang, Y. Feng. Broadband microwave absorption utilizing water-based metamaterial structures. Opt. Express, 26, 8522-8531(2018).

    [15] A. Andryieuski, S. Kuznetsova, S. Zhukovsky, Y. Kivshar, A. Lavrinenko. Water: promising opportunities for tunable all-dielectric electromagnetic metamaterials. Sci. Rep., 5, 13535(2015).

    [16] Y. J. Yoo, S. Ju, S. Y. Park, Y. J. Kim, J. Bong, T. Lim, K. W. Kim, J. Y. Rhee, Y. P. Lee. Metamaterial absorber for electromagnetic waves in periodic water droplets. Sci. Rep., 5, 14018(2015).

    [17] Y. Pang, J. Wang, Q. Cheng, S. Xia, S. Qu. Thermally tunable water-substrate broadband metamaterial absorbers. Appl. Phys. Lett., 110, 104103(2017).

    [18] X. Zhang, D. Zhang, Y. Fu, S. Li, Y. Wei, K. Chen, X. Wang, S. Zhuang. 3D printed swastika shape ultra-broadband water-based microwave absorber. IEEE Antennas Wireless Propag. Lett., 19, 821-825(2020).

    [19] Y. Youngseo, L. Daecheon, M. M. Tentzeris, L. Sungjoon. Low-cost metamaterial absorber using three-dimensional circular truncated cone. Microw. Opt. Technol. Lett., 60, 1622-1630(2018).

    [20] W. J. Ellison. Permittivity of pure water, at standard atmospheric pressure, over the frequency range 0–25 THz and the temperature range 0–100°C. J. Phys. Chem. Ref. Data, 36, 1-18(2007).

    [21] J. Xie, S. Quader, F. Xiao, C. He, I. D. Rukhlenko. Truly all-dielectric ultra-broadband metamaterial absorber: water-based and ground-free. IEEE Antennas Wireless Propag., 18, 536-540(2019).

    [22] H. T. Chen. Interference theory of metamaterial perfect absorbers. Opt. Express, 20, 7165-7172(2012).

    [23] H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, R. D. Averitt. Highly flexible wide angle of incidence terahertz metamaterial absorber: design, fabrication, and characterization. Phys. Rev. B, 78, 241103(2008).

    [24] H. Kwon, G. D’Aguanno, A. Alu. Optically transparent microwave absorber based on water-based moth-eye structures. Opt. Express, 29, 9190-9198(2021).

    [25] R. Jian, Y. Yuan. Cylindrical-water-resonator-based ultra-broadband microwave absorber. Opt. Mater. Express, 8, 2060-2071(2018).

    [26] H. Xiong, F. Yang. Ultra-broadband and tunable saline water-based absorber in microwave regime. Opt. Express, 28, 5306-5316(2020).

    [27] Y. Zhou, Z. Shen, J. Wu, Y. Zhang, S. Huang, H. Yang. Design of ultra-wideband and near-unity absorption water-based metamaterial absorber. Appl. Phys. A, 126, 52(2020).

    Tools

    Get Citation

    Copy Citation Text

    Yan Chen, Kejian Chen, Dajun Zhang, Shihao Li, Yeli Xu, Xiong Wang, Songlin Zhuang, "Ultrabroadband microwave absorber based on 3D water microchannels," Photonics Res. 9, 1391 (2021)

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Physical Optics

    Received: Feb. 18, 2021

    Accepted: May. 12, 2021

    Published Online: Jul. 2, 2021

    The Author Email: Kejian Chen (ee.kjchen@gmail.com)

    DOI:10.1364/PRJ.422686

    Topics