Journal of Synthetic Crystals, Volume. 50, Issue 7, 1327(2021)
Photovoltaic Microfluidic Manipulation Based on Lithium Niobate
[1] [1] BLZQUEZ-CASTRO A, GARCA-CABAES A, CARRASCOSA M. Biological applications of ferroelectric materials[J]. Applied Physics Reviews, 2018, 5(4): 041101.
[2] [2] BAZZAN M, SADA C. Optical waveguides in lithium niobate: recent developments and applications[J]. Applied Physics Reviews, 2015, 2(4): 040603.
[3] [3] MINZIONI P, OSELLAME R, SADA C, et al. Roadmap for optofluidics[J]. Journal of Optics, 2017, 19(9): 093003.
[4] [4] JUBERA M, ELVIRA I, GARCA-CABAES A, et al. Trapping and patterning of biological objects using photovoltaic tweezers[J]. Applied Physics Letters, 2016, 108(2): 023703.
[5] [5] MICCIO L, MARCHESANO V, MUGNANO M, et al. Light induced DEP for immobilizing and orienting Escherichia coli bacteria[J]. Optics and Lasers in Engineering, 2016, 76: 34-39.
[6] [6] KONG Y F, BO F, WANG W W, et al. Recent progress in lithium niobate: optical damage, defect simulation, and on-chip devices[J]. Advanced Materials, 2020, 32(3): 1806452.
[7] [7] KENG P Y, CHEN S, DING H, et al. Micro-chemical synthesis of molecular probes on an electronic microfluidic device[J].PNAS, 2012, 109(3): 690-695.
[8] [8] LI F F, ZHANG X, GAO K F, et al. All-optical splitting of dielectric microdroplets by using a y-cut-LN-based anti-symmetrical sandwich structure[J]. Optics Express, 2019, 27(18): 25767-25776.
[9] [9] POHL H A. Some effects of nonuniform fields on dielectrics[J]. Journal of Applied Physics, 1958, 29(8): 1182-1188.
[10] [10] ZHANG C, KHOSHMANESH K, MITCHELL A, et al. Dielectrophoresis for manipulation of micro/nano particles in microfluidic systems[J]. Analyticaland Bioanalytical Chemistry, 2010, 396(1): 401-420.
[11] [11] DIMAKI M, BGGILD P. Dielectrophoresis of carbon nanotubes using microelectrodes: a numerical study[J]. Nanotechnology, 2004, 15(8): 1095-1102.
[12] [12] MICCIO L, PATURZO M, FINIZIO A, et al. Light induced patterning of poly(dimethylsiloxane) microstructures[J]. Optics Express, 2010, 18(11): 10947-10955.
[13] [13] SCHMID S, HIEROLD C, BOISEN A. Modeling the Kelvin polarization force actuation of micro- and nanomechanical systems[J]. Journal of Applied Physics, 2010, 107(5): 054510.
[14] [14] KANG K H. How electrostatic fields change contact angle in electrowetting[J]. Langmuir, 2002, 18(26): 10318-10322.
[15] [15] JOANNY J F, DE GENNES P G. A model for contact angle hysteresis[J]. The Journal of Chemical Physics, 1984, 81(1): 552-562.
[16] [16] BRZOSKA J B, AZOUZ I B, RONDELEZ F. Silanization of solid substrates: a step toward reproducibility[J]. Langmuir, 1994, 10(11): 4367-4373.
[17] [17] QUR D. Wetting and roughness[J]. Annual Review of Materials Research, 2008, 38(1): 71-99.
[19] [19] ZHANG X Z, WANG J Q, TANG B Q, et al. Optical trapping and manipulation of metallic micro/nanoparticles via photorefractive crystals[J]. Optics Express, 2009, 17(12): 9981-9988.
[20] [20] EGGERT H A, KUHNERT F Y, BUSE K, et al. Trapping of dielectric particles with light-induced space-charge fields[J]. Applied Physics Letters, 2007, 90(24): 241909.
[21] [21] ESSELING M, HOLTMANN F, WOERDEMANN M, et al. Two-dimensional dielectrophoretic particle trapping in a hybrid crystal/PDMS-system[J]. Optics Express, 2010, 18(16): 17404-17411.
[22] [22] ESSELING M, ZALTRON A, SADA C, et al. Charge sensor and particle trap based on z-cut lithium niobate[J]. Applied PhysicsLetters, 2013, 103(6): 061115.
[23] [23] ARREGUI C, RAMIRO J B,ALCZAR , et al. Optoelectronic tweezers under arbitrary illumination patterns: theoretical simulations and comparison to experiment[J]. Optics Express, 2014, 22(23): 29099-29110.
[24] [24] CARRASCOSA M, GARCA-CABAES A, JUBERA M, et al. LiNbO3: a photovoltaic substrate for massive parallel manipulation and patterning of nano-objects[J]. Applied Physics Reviews, 2015, 2(4): 040605.
[25] [25] GARCA-CABAES A, BLZQUEZ-CASTRO A, ARIZMENDI L, et al. Recent achievements on photovoltaic optoelectronic tweezers based on lithium niobate[J]. Crystals, 2018, 8(2): 65.
[26] [26] BURGOS H, JUBERA M, VILLARROEL J, et al. Role of particle anisotropy and deposition method on the patterning of nano-objects by the photovoltaic effect inLiNbO3[J]. Optical Materials, 2013, 35(9): 1700-1705.
[27] [27] SEBASTIN-VICENTE C, MUOZ-CORTS E, GARCA-CABAES A, et al. Real-time operation of photovoltaic optoelectronic tweezers: new strategies for massive nano-object manipulation and reconfigurable patterning[J]. Particle & Particle Systems Characterization, 2019, 36(9): 1900233.
[28] [28] MUOZ-MARTNEZ J F, ELVIRA I, JUBERA M, et al. Efficient photo-induced dielectrophoretic particle trapping on Fe∶LiNbO3 for arbitrary two dimensional patterning[J]. Optical Materials Express, 2015, 5(5): 1137-1146.
[29] [29] MUOZ-MARTNEZ J F, JUBERA M, MATARRUBIA J, et al. Diffractive optical devices produced by light-assisted trapping of nanoparticles[J]. Optics Letters, 2016, 41(2): 432.
[30] [30] SPERLING J R, NEALE S L, CLARK A W. Bridging the gap: rewritable electronics using real-time light-induced dielectrophoresis on lithium niobate[J]. Scientific Reports, 2017, 7: 9660.
[31] [31] ZAN Z T, WANG D H, LI F F, et al. Impact of the crystal orientation of LiNbO3∶Fe on the dynamic behaviors of the particles trapped through the photovoltaic tweezer[J]. Optics Communications, 2020, 457: 124727.
[32] [32] ESSELING M, ZALTRON A, HORN W, et al. Optofluidic droplet router[J]. Laser & Photonics Reviews, 2015, 9(1): 98-104.
[33] [33] CHEN L P, FAN B L, YAN W B, et al. Photo-assisted splitting of dielectric microdroplets in a LN-based sandwich structure[J]. Optics Letters, 2016, 41(19): 4558-4561.
[34] [34] CHEN L P, LI S B, FAN B L, et al. Dielectrophoretic behaviours of microdroplet sandwiched between LN substrates[J]. Scientific Reports, 2016, 6: 29166.
[35] [35] FAN B L, LI F F, CHEN L P, et al. Photovoltaic manipulation of water microdroplets on a hydrophobic LiNbO3 substrate[J]. Physical Review Applied, 2017, 7(6): 064010.
[36] [36] GAO K F, ZHANG X, ZAN Z T, et al. Visible-light-assisted condensation of ultrasonically atomized water vapor on LiNbO3∶Fe crystals[J]. Optics Express, 2019, 27(26): 37680-37694.
[37] [37] ZHANG X, GAO K F, GAO Z X, et al. Photovoltaic splitting of water microdroplets on a y-cut LiNbO3∶Fe crystal coated with oil-infused hydrophobic insulating layers[J]. Optics Letters, 2020, 45(5): 1180-1183.
[38] [38] GAO Z X, MI Y H, WANG M T, et al. Hydrophobic-substrate based water-microdroplet manipulation through the long-range photovoltaic interaction from a distant LiNbO3∶Fe crystal[J]. Optics Express, 2021, 29(3): 3808-3824.
[39] [39] ZHANG X, MUGISHA E R, MI Y, et al. Photovoltaic cycling to-and-fro actuation of a water-microdroplet for automatic repeatable solute acquisition on oil-infused hydrophobic LN∶Fe surface[J]. ACS Photonics, 2021, 8(2): 639-647.
[40] [40] MUOZ-CORTS E, PUERTO A, BLZQUEZ-CASTRO A, et al. Optoelectronic generation of bio-aqueous femto-droplets based on the bulk photovoltaic effect[J]. Optics Letters, 2020, 45(5): 1164-1167.
[41] [41] PUERTO A, MNDEZ A, ARIZMENDI L, et al. Optoelectronic manipulation, trapping, splitting, and merging of water droplets and aqueous biodroplets based on the bulk photovoltaic effect[J]. Physical Review Applied, 2020, 14(2): 024046.
Get Citation
Copy Citation Text
ZHANG Xiong, GAO Zuoxuan, GAO Kaifang, SHI Lihong, LI Feifei, FAN Bolin, CHEN Lipin, ZAN Zhitao, CHEN Hongjian, YAN Wenbo. Photovoltaic Microfluidic Manipulation Based on Lithium Niobate[J]. Journal of Synthetic Crystals, 2021, 50(7): 1327
Category:
Received: Apr. 25, 2021
Accepted: --
Published Online: Dec. 7, 2021
The Author Email:
CSTR:32186.14.