Chinese Journal of Lasers, Volume. 27, Issue 7, 581(2000)
Er3+-doped Fiber Laser Based on Fiber Bragg Grating
[1] [1] T. Komukai, M. Nakazawa. Tunable single frequency erbium doped fiber ring lasers using fiber grating etalons. Jpn. J. Appl. Phys., 1995, 34(6A):679~680
[2] [2] G. A. Ball, W. W. Morey. Compression-tuned single-frequency Bragg grating fiber laser. Opt. Lett., 1994, 19(23):1979~1981
[3] [3] P. R. Morkel, G. J. Cowle, D. N. Payne. Travelling-wave erbium fibre ring laser with 60 kHz linewidth. Electron. Lett., 1990, 26(10):632~634
[4] [4] Y. Kimura, K. Suzuki, M. Nakazawa. Laser-diode-pumped mirror-free Er3+-doped fiber laser. Opt. Lett., 1989, 14(18):999~1001
[5] [5] L. Reekie, R. J. Mears, S. B. Poole et al.. Tunable single-mode fiber laser. J. Lightwave Technol., 1986, 4(7):956~960
[7] [7] N. Kagi. Gain characteristics of Er3+-doped fiber with a quasi-confined structure. J. Lightwave Technol., 1990, 8(9):1319~1322
[8] [8] Dong Xiaoyi, Wang Tingyao. New Generational Optical Fiber Communication and SDH—The Principles and Developments. Tianjin: Tianjing Science and Technology Press, 1994. 64~69 (in Chinese)
[9] [9] G. Meltz, W. W. Morey, W. H. Glenn. Formation of Bragg gratings in optical fibers by a transverse holographic method. Ot. Lett., 1989, 14(15):823~825
[10] [10] K. O. Hill, B. Malo, F. Bilodeau et al.. Bragg Gratings fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask. Appl. Phys. Lett., 1993, 62(10):1035~1037
[11] [11] R. M. Atkins, V. Mizrahi, T. Erdogan. 248 nm induced vacuum UV spectral changes in optical fibre preform cores: support for a colour centre model of photosensitivity. Electon. Lett., 1993, 29(4):385~387
Get Citation
Copy Citation Text
[in Chinese], [in Chinese]. Er3+-doped Fiber Laser Based on Fiber Bragg Grating[J]. Chinese Journal of Lasers, 2000, 27(7): 581