Optical Technique, Volume. 50, Issue 6, 641(2024)
The development and applications of room-temperature solid-state masers
[1] [1] Weber J. Masers[J]. Reviews of Modern Physics,1959,31:681.
[2] [2] Basov N, Prokhorov A. Theory of the molecular generator and molecular power amplifier[J]. Sov Phys JETP,1956,3:426—429.
[3] [3] Gordon J P, Zeiger H J, Townes C H. Molecular microwave oscillator and new hyperfine structure in the microwave spectrum of NH3[J]. Physical Review,1954,95:282.
[4] [4] Gordon J P, Zeiger H J, Townes C H. The maser-new type of microwave amplifier, frequency standard, and spectrometer[J]. Physical Review,1955,99:1264—1274.
[5] [5] Gordon JP. Reflections on the first Maser[J]. Optics and Photonics News,2010,21:34—41.
[6] [6] Einstein A. Zur quantentheorie der strahlung[J]. Mitteilungen Phys. Ges. Zr,1916,16:47—62.
[7] [7] Ehrenfest P, Tolman RC. Weak quantization[J]. Physical Review,1924,24:287.
[8] [8] Townes CH. Early history of quantum electronics[J]. Journal of Modern Optics,2005,52:1637—1645.
[9] [9] Purcell EM, Pound RV. A nuclear spin system at negative temperature[J]. Physical Review,1951,81:279.
[10] [10] Basov N G, Prokhorov A M. About possible methods for obtaining active molecules for a molecular oscillator[J]. JETP Letters,1955,28:249.
[11] [11] Bloembergen N. Proposal for a new type solid state maser[J]. Physical Review,1956,104:324.
[12] [12] Culver W. The maser: a molecular amplifier for microwave radiation[J]. Science,1957,126(3278):810—814.
[13] [13] Siegman AE, Hagger H. Microwave solid-state masers[J]. Physics Today,1964,17:65—66.
[14] [14] Meyer J W. The solid state maser-principles,applications,and potential[D]. Cambridge:Massachusetts Institute of Technology,1960.
[15] [15] Bourgeois P, et al. Zero-field Fe/sup 3+: sapphire whispering-gallery-mode solid-state maser oscillator[EB/OL]. 2005:355—362. https:∥ieeexplore.ieee.org/abstract/document/1573958.
[16] [16] Makhov G, Kikuchi C, Lambe J, Terhune RW. Maser action in ruby[J]. Physical Review,1958,109:1399.
[17] [17] Kikuchi C, Lambe J, Makhov G, Terhune RW. Ruby as a maser material[J]. Journal of Applied Physics,1959,30:1061—1067.
[18] [18] Clauss RC, Shell JS, Reid M. Low-noise systems in the deep space network[M]. Hoboken:Wiley,2008.
[19] [19] Corliss WR. A history of the deep space network[J]. NASA STI/Recon Technical Report N,1976,77:14188.
[20] [20] Clauss RC. A 2388 mc two-cavity maser for planetary radar[J]. Microwave Journal,1965,8:74—77.
[21] [21] Reid M, Clauss R, Bathker D, et al. Low-noise microwave receiving systems in a worldwide network of large antennas[J]. Proceedings of the IEEE,1973,61:1330—1335 .
[22] [22] Dick GJ, Wang RT. Ultra-stable performance of the superconducting cavity maser[J]. IEEE Trans. Instrum. Measur,1991,40:174—177.
[23] [23] Collier R, Collins M, Moss D. An X-band electron spin resonance spectrometer with a ruby maser preamplifier[J]. Journal of Physics E: Scientific Instruments,1968,1:607.
[24] [24] Devor D, d'Haenens I, Asawa CK. Microwave generation in ruby due to population inversion produced by optical absorption[J]. Physical Review Letters,1962,8:432.
[25] [25] Closs GL, Gautam P, Zhang D, et al. Steady-state and time-resolved direct detection EPR spectra of fullerene triplets in liquid solution and glassy matrixes: evidence for a dynamic Jahn-Teller effect in triplet C60[J]. The Journal of Physical Chemistry,1992,96:5228—5231 .
[26] [26] Levanon H, Meiklyar V, Michaeli A, et al. Paramagnetic states and dynamics of photoexcited fullerene (C60)[J]. The Journal of Physical Chemistry,1992,96:6128—6131.
[27] [27] Regev A, Gamliel D, Meiklyar V, et al. Dynamics of triplet fullerene-60 probed by electron paramagnetic resonance. Motional analysis in isotropic and liquid crystalline matrixes[J]. The Journal of Physical Chemistry,1993,97:3671—3679.
[28] [28] Blank A, Kastner R, Levanon H. Exploring new active materials for low-noise room-temperature microwave amplifiers and other devices[J]. IEEE Transactions on Microwave theory and Techniques,1998,46:2137—2144.
[29] [29] Oxborrow M, Breeze JD, Alford NM. Room-temperature solid-state maser[J]. Nature,2012,488:353—356.
[30] [30] Sloop DJ, Yu HL, Lin TS, Weissman S. Electron spin echoes of a photoexcited triplet: pentacene in p‐terphenyl crystals[J].The Journal of Chemical Physics,1981,75:3746—3757.
[31] [31] Khler J, Disselhorst JAJM, Donckers MCJM, et al. Magnetic resonance of a single molecular spin[J].Nature,1993,363:242—244.
[32] [32] Takeda K, Takegoshi K, Terao T. Zero-field electron spin resonance and theoretical studies of light penetration into single crystal and polycrystalline material doped with molecules photoexcitable to the triplet state via intersystem crossing[J]. The Journal of Chemical Physics,2002,117:4940—4946.
[33] [33] Wu H, Ng W, Mirkhanov S, et al. Unraveling the room-temperature spin dynamics of photoexcited pentacene in its lowest triplet state at zero field[J]. Journal Of Physical Chemistry C,2019,123:24275—24279.
[34] [34] Wu H, Mirkhanov S, Ng W, et al. Invasive optical pumping for room-temperature masers, time-resolved EPR, triplet-DNP, and quantum engines exploiting strong coupling[J]. Optics Express,2020,28:29691—29702.
[35] [35] Wu H, et al. Room-temperature quasi-continuous-wave pentacene maser pumped by an invasive Ce: YAG luminescent concentrator[J]. Physical Review Applied,2020,14:064017.
[36] [36] Blank A, Levanon H. Toward maser action at room temperature by triplet-radical interaction and its application to microwave technology[J]. Riken Review,2002,44:128.
[37] [37] Blank A, Levanon H. Triplet radical interaction. Direct measurement of triplet polarization transfer by Fourier transform electron paramagnetic resonance[J]. The Journal of Physical Chemistry A,2000,104:794—800.
[38] [38] Blank A, Levanon H. Applications of photoinduced electron spin polarization at room temperature to microwave technology[J]. Applied Physics Letters,2001,79:1694—1696.
[39] [39] Kraus H, et al. Room-temperature quantum microwave emitters based on spin defects in silicon carbide[J]. Nature Physics,2014,10:157—162.
[40] [40] Widmann M, et al.Coherent control of single spins in silicon carbide at room temperature[J].Nature Materials,2015,14:164—168.
[41] [41] Jelezko F, Wrachtrup J. Single defect centres in diamond: A review[J]. Physica Status Solidi (a),2006,203:3207—3225.
[42] [42] Redman D, Brown S, Sands R, et al. Spin dynamics and electronic states of N-V centers in diamond by EPR and four-wave-mixing spectroscopy[J]. Physical Review Letters,1991,67:3420.
[43] [43] Takahashi S, Hanson R, Van Tol J, et al. Quenching spin decoherence in diamond through spin bath polarization[J]. Physical Review Letters,2008,101:047601.
[44] [44] Jarmola A, Acosta V, Jensen K, et al. Temperature-and magnetic-field-dependent longitudinal spin relaxation in nitrogen-vacancy ensembles in diamond[J]. Physical Review Letters,2012,108:197601.
[45] [45] Poklonski N, et al. Nitrogen-doped chemical vapour deposited diamond: a new material for room-temperature solid state maser[J]. Chinese Physics Letters,2007,24:2088.
[46] [46] Jin L, et al. Proposal for a room-temperature diamond maser[J]. Nature Communications,2015,6:8251.
[47] [47] Breeze JD, Salvadori E, Sathian J, et al. Continuous-wave room-temperature diamond maser[J]. Nature,2018,555:493—496.
Get Citation
Copy Citation Text
WU Hao, WANG Kaipu, ZHAO Qing. The development and applications of room-temperature solid-state masers[J]. Optical Technique, 2024, 50(6): 641