Chinese Journal of Lasers, Volume. 47, Issue 7, 701013(2020)

Nanolasers: Progress, New Physics and Technical Challenges

Zhang Haoran1,2, Sun Jiacheng3, Deng Zhilei1,2, Zou Junlong4, Chen Jiawei3, He Xi3, Wang Tao1,2, and Wang Gaofeng1,2
Author Affiliations
  • 1Engineering Research Center of Smart Microsensors and Microsystems, Ministry of Education, Hangzhou Dianzi University, Hangzhou, Zhejiang 310018, China
  • 2School of Electronics and Information, Hangzhou Dianzi University, Hangzhou, Zhejiang 310018, China
  • 3Zhuoyue Honors College, Hangzhou Dianzi University, Hangzhou, Zhejiang 310018, China
  • 4School of Communication and Engineering, Hangzhou Dianzi University, Hangzhou, Zhejiang 310018, China
  • show less
    References(126)

    [1] Ning C Z. Semiconductor nanolasers[J]. Progress in Physics, 31, 145-160(2011).

    [2] Wineland D J, Itano W M. Laser cooling[J]. Physics Today, 40, 34-40(1987).

    [3] Hall J L. Stabilized lasers and precision measurements[J]. Science, 202, 147-156(1978).

    [4] O'Brien J L. Furusawa A, Vuckovic J. Photonic quantum technologies[J]. Nature Photonics, 3, 687-695(2009).

    [5] Maiman T H. Stimulated optical radiation in ruby[J]. Nature, 187, 493-494(1960).

    [6] Heard H G. Ultra-violet gas laser at room temperature[J]. Nature, 200, 667(1963).

    [8] Myer J A, Itzkan I, Kierstead E. Dye lasers in the ultraviolet[J]. Nature, 225, 544-545(1970).

    [9] Basov N G. Semiconductor lasers[J]. Science, 149, 821-827(1965).

    [11] Baba T, Fujita P, Sakai A et al. Lasing characteristics of GaInAsP-InP strained quantum-well microdisk injection lasers with diameter of 2-10 μm[J]. IEEE Photonics Technology Letters, 9, 878-880(1997).

    [12] Eaton S W, Fu A, Wong A B et al. Semiconductor nanowire lasers[J]. Nature Reviews Materials, 1, 16028(2016).

    [14] Wiersma D S, Cavalieri S. A temperature-tunable random laser[J]. Nature, 414, 708-709(2001).

    [16] Oulton R F. Surface plasmon lasers: sources of nanoscopic light[J]. Materials Today, 15, 26-34(2012).

    [17] Zhong X L, Li Z Y. All-analytical semiclassical theory of spaser performance in a plasmonic nanocavity[J]. Physical Review B, 88, 085101(2013).

    [22] Pan S H, Deka S S, El Amili A et al. Nanolasers: second-order intensity correlation, direct modulation and electromagnetic isolation in array architectures[J]. Progress in Quantum Electronics, 59, 1-18(2018).

    [24] Soda H, Iga K, Kitahara C et al. GaInAsP/InP surface emitting injection lasers[J]. Japanese Journal of Applied Physics, 18, 2329-2330(1979).

    [25] Iga K, Koyama F, Kinoshita S. Surface emitting semiconductor lasers[J]. IEEE Journal of Quantum Electronics, 24, 1845-1855(1988).

    [26] Iga K. Surface-emitting laser-its birth and generation of new optoelectronics field[J]. IEEE Journal of Selected Topics in Quantum Electronics, 6, 1201-1215(2000).

    [27] [27] National ResearchCouncil. Laser radar: progress and opportunities in active electro-optical sensing[R]. [S.l.]: The National Academies Press, 2014.

    [29] Marciniak M, Piskorski Ł, Gębski M et al. The vertical-cavity surface-emitting laser as a sensing device[J]. Journal of Lightwave Technology, 36, 3185-3192(2018).

    [30] Gębski M, Dems M, Wasiak M et al. Monolithic subwavelength high-index-contrast grating VCSEL[J]. IEEE Photonics Technology Letters, 27, 1953-1956(2015).

    [31] Yablonovitch E. Inhibited spontaneous emission in solid-state physics and electronics[J]. Physical Review Letters, 58, 2059-2062(1987).

    [32] John S. Strong localization of photons in certain disordered dielectric superlattices[J]. Physical Review Letters, 58, 2486-2489(1987).

    [33] Painter O. Two-dimensional photonic band-Gap defect mode laser[J]. Science, 284, 1819-1821(1999).

    [34] Yu Y, Xue W Q, Semenova E et al. Demonstration of a self-pulsing photonic crystal Fano laser[J]. Nature Photonics, 11, 81-84(2017).

    [35] Noda S, Fujita M, Asano T. Spontaneous-emission control by photonic crystals and nanocavities[J]. Nature Photonics, 1, 449-458(2007).

    [36] Seo M, Jeong K, Yang J et al. Low threshold current single-cell hexapole mode photonic crystal laser[J]. Applied Physics Letters, 90, 171122(2007).

    [37] Watanabe K, Kishi Y, Hachuda S et al. Simultaneous detection of refractive index and surface charges in nanolaser biosensors[J]. Applied Physics Letters, 106, 021106(2015).

    [38] Couteau C, Larrue A, Wilhelm C et al. Nanowire lasers[J]. Nanophotonics, 4, 90-107(2015).

    [39] Huang M H, Mao S, Feick H et al. Room-temperature ultraviolet nanowire nanolasers[J]. Science, 292, 1897-1899(2001).

    [40] Ma Y G, Guo X, Wu X Q et al. Semiconductor nanowire lasers[J]. Advances in Optics & Photonics, 5, 216-273(2013).

    [41] Xiao Y. Single-nanowire single-mode laser[D]. Hangzhou: Zhejiang University(2011).

    [43] Xu L T, Li F, Liu Y H et al. Surface plasmon nanolaser: principle, structure, characteristics and applications[J]. Applied Sciences, 9, 861(2019).

    [44] Oulton R F, Sorger V J, Zentgraf T et al. Plasmon lasers at deep subwavelength scale[J]. Nature, 461, 629-632(2009).

    [45] Lu Y J, Kim J, Chen H Y et al. Plasmonic nanolaser using epitaxially grown silver film[J]. Science, 337, 450-453(2012).

    [48] Cao H. Spatial confinement of laser light in active random media[J]. Physical Review Letters, 84, 5584-5587(2000).

    [49] Cao H. Lasing in random media[J]. Waves in Random Media, 13, R1-R39(2003).

    [50] Pickering T, Hamm J M, Page A F et al. Cavity-free plasmonic nanolasing enabled by dispersionless stopped light[J]. Nature Communications, 5, 4972(2014).

    [51] Ding K, Diaz J O, Bimberg D et al. Modulation bandwidth and energy efficiency of metallic cavity semiconductor nanolasers with inclusion of noise effects[J]. Laser & Photonics Reviews, 9, 488-497(2015).

    [52] Hill M T, Oei Y S, Smalbrugge B et al. Lasing in metallic-coated nanocavities[J]. Nature Photonics, 1, 589-594(2007).

    [53] Nezhad M P, Simic A, Bondarenko O et al. Room-temperature subwavelength metallo-dielectric lasers[J]. Nature Photonics, 4, 395-399(2010).

    [54] Ding K, Hill M T, Liu Z C et al. Recordperformance of electrical injection sub-wavelength metallic-cavity semiconductor lasers at room temperature[J]. Optics Express, 21, 4728-4733(2013).

    [56] Kwon S H, Kang J H, Seassal C et al. Subwavelength plasmonic lasing from a semiconductor nanodisk with silver nanopan cavity[J]. Nano Letters, 10, 3679-3683(2010).

    [57] Ma R M, Oulton R F, Sorger V J et al. Room-temperature sub-diffraction-limited plasmon laser by total internal reflection[J]. Nature Materials, 10, 110-113(2011).

    [59] Ning C Z. What is Laser Threshold?[J]. IEEE Journal of Selected Topics in Quantum Electronics, 19, 1503604(2013).

    [60] Ota Y, Kakuda M, Watanabe K et al. Thresholdless quantum dot nanolaser[J]. Optics Express, 25, 19981(2017).

    [61] Bergman D J, Stockman M I. Surface plasmon amplification by stimulated emission of radiation: quantum generation of coherent surface plasmons in nanosystems[J]. Physical Review Letters, 90, 027402(2003).

    [62] Ma R M, Oulton R F. Applications of nanolasers[J]. Nature Nanotechnology, 14, 12-22(2018).

    [63] Stockman M I. Nanoplasmonics: past, present, and glimpse into future[J]. Optics Express, 19, 22029-22106(2011).

    [64] Stockman M I. Spasers explained[J]. Nature Photonics, 2, 327-329(2008).

    [65] Noginov M, Zhu G, Belgrave A M et al. Demonstration of a spaser-based nanolaser[J]. Nature, 460, 1110-1112(2009).

    [66] Flynn R A, Kim C S, Vurgaftman I et al. A room-temperature semiconductor spaser operating near 1.5 μm[J]. Optics Express, 19, 8954-8961(2011).

    [67] Yang A, Hoang T B, Dridi M et al. Real-time tunable lasing from plasmonic nanocavity arrays[J]. Nature Communications, 6, 6939(2015).

    [68] Zhou W, Dridi M, Suh J Y et al. Lasing action in strongly coupled plasmonic nanocavity arrays[J]. Nature Nanotechnology, 8, 506-511(2013).

    [69] Meng X G, Liu J J, Kildishev A V et al. Highly directional spaser array for the red wavelength region[J]. Laser & Photonics Reviews, 8, 896-903(2014).

    [70] Hakala T K, Rekola H T, Vakevainen A I et al. Lasing in dark and bright modes of a finite-sized plasmonic lattice[J]. Nature Communications, 8, 13687(2017).

    [72] Ye Y, Wong Z J, Lu X F et al. Monolayer excitonic laser[J]. Nature Photonics, 9, 733-737(2015).

    [73] Li Y Z, Zhang J X, Huang D D et al. Room-temperature continuous-wave lasing from monolayer molybdenum ditelluride integrated with a silicon nanobeam cavity[J]. Nature Nanotechnology, 12, 987-992(2017).

    [74] Liu X Z, Galfsky T, Sun Z et al. Strong light-matter coupling in two-dimensional atomic crystals[J]. Nature Photonics, 9, 30-34(2015).

    [75] Wu S, Buckley S, Schaibley J R et al. Monolayer semiconductor nanocavity lasers with ultralow thresholds[J]. Nature, 520, 69-72(2015).

    [76] Kuksenkov D V, Temkin H, Lear K L et al. Spontaneous emission factor in oxide confined vertical-cavity lasers[J]. Applied Physics Letters, 70, 13-15(1997).

    [77] Wang T, Puccioni G P, Lippi G L. Dynamical buildup of lasing in mesoscale devices[J]. Scientific Reports, 5, 15858(2015).

    [78] Wang T, Puccioni G P, Lippi G L. Photon bursts at lasing onset and modelling issues in micro-VCSELs[J]. Journal of Modern Optics, 67, 55-68(2020).

    [79] Shin J, Ju Y, Shin H et al. Spontaneous emission factor of oxidized vertical-cavity surface-emitting lasers from the measured below-threshold cavity loss[J]. Applied Physics Letters, 70, 2344-2346(1997).

    [80] Rice P R, Carmichael H J. Photon statistics of a cavity-QED laser:a comment on the laser-phase-transition analogy[J]. Physical Review A, Atomic, Molecular, and Optical Physics, 50, 4318-4329(1994).

    [81] Ma R M, Oulton R F, Sorger V J et al. Plasmon lasers:coherent light source at molecular scales[J]. Laser & Photonics Reviews, 7, 1-21(2013).

    [82] Björk G, Karlsson A, Yamamoto Y. Definition of a laser threshold[J]. Physical Review A, 50, 1675-1680(1994).

    [83] van Druten N J, Lien Y, Serrat C et al. Laser with thresholdless intensity fluctuations[J]. Physical Review A, 62, 053808(2000).

    [84] Lebreton A, Abram I, Braive R et al. Unequivocal differentiation of coherent and chaotic light through interferometric photon correlation measurements[J]. Physical Review Letters, 110, 163603(2013).

    [85] Roumpos G, Cundiff S T. Photon number distributions from a diode laser[J]. Optics Letters, 38, 139-141(2013).

    [86] Foster G T, Mielke S L, Orozco L A. Intensity correlations of a noise-driven diode laser[J]. Journal of the Optical Society of America B, 15, 2646-2653(1998).

    [87] Hachair X, Braive R, Lippi G L et al. Identification of the stimulated-emission threshold in high-β nanoscale lasers through phase-space reconstruction[J]. Physical Review A, 83, 053836(2011).

    [88] Ates S, Gies C, Ulrich S M et al. Influence of the spontaneous optical emission factor β on the first-order coherence of a semiconductor microcavity laser[J]. Physical Review B, 78, 155319(2008).

    [89] Nomura M, Iwamoto S, Kumagai N et al. Temporal coherence of a photonic crystal nanocavity laser with high spontaneous emission coupling factor[J]. Physical Review B, 75, 195313(2007).

    [90] Wang T, Wang X H, Deng Z L et al. Dynamics of a micro-VCSEL operated in the threshold region under low-level optical feedback[J]. IEEE Journal of Selected Topics in Quantum Electronics, 25, 1-8(2019).

    [91] Fox M, Javanainen J. Quantum optics: an introduction[J]. Physics Today, 60, 74-75(2007).

    [92] Wiersig J, Gies C, Jahnke F et al. Direct observation of correlations between individual photon emission events of a microcavity laser[J]. Nature, 460, 245-249(2009).

    [93] Hostein R, Braive R, Le Gratiet L et al. Demonstration of coherent emission from high-beta photonic crystal nanolasers at room temperature[J]. Optics Letters, 35, 1154-1156(2010).

    [94] Chow W W, Jahnke F, Gies C. Emission properties of nanolasers during the transition to lasing[J]. Light: Science & Applications, 3, e201(2014).

    [96] Carroll O, Tanguy Y, Houlihan J et al. Dynamics of self-pulsing semiconductor lasers with optical feedback[J]. Optics Communications, 239, 429-436(2004).

    [97] Takiguchi Y, Liu Y, Ohtsubo J. Low-frequency fluctuation induced by injection-current modulation in semiconductor lasers with optical feedback[J]. Optics Letters, 23, 1369-1371(1998).

    [98] Li X F, Pan W, Luo B et al. Nonlinear dynamic behaviors of an optically injected vertical-cavity surface-emitting laser[J]. Chaos, Solitons & Fractals, 27, 1387-1394(2006).

    [99] Wieczorek S, Krauskopf B, Simpson T B et al. The dynamical complexity of optically injected semiconductor lasers[J]. Physics Reports, 416, 1-128(2005).

    [100] Abdulrhmann S, Ahmed M, Yamada M. New model of analysis of semiconductor laser dynamics under strong optical feedback in fiber communication systems[J]. Proceedings of SPIE, 4986, 490-501(2003).

    [101] Otsuka K, Ko J Y, Kubota T. Nonstationary chaotic oscillations in lasers with frequency-shifted feedback[J]. Optics Letters, 26, 638-640(2001).

    [102] Lin H, Ourari S, Huang T Y et al. Photonic microwave generation in multimode VCSELs subject to orthogonal optical injection[J]. Journal of the Optical Society of America B, 34, 2381(2017).

    [103] Niu S X, Zhang M J, An Y et al. Frequency-tunable all-optical clock division using semiconductor laser subjected to external optical injection[J]. Acta Physica Sinica, 57, 6998-7004(2008).

    [104] Narita Y, Tsuda N, Yamada J. Study on collision avoidance sensor using chaos laser radar[J]. IEEJ Transactions on Electronics, Information and Systems, 123, 2079-2084(2003).

    [107] Vatin J, Rontani D, Sciamanna M. Experimental reservoir computing using VCSEL polarization dynamics[J]. Optics Express, 27, 18579-18584(2019).

    [108] Hamel P, Haddadi S, Raineri F et al. Spontaneous mirror-symmetry breaking in coupled photonic-crystal nanolasers[J]. Nature Photonics, 9, 311-315(2015).

    [109] Marconi M, Javaloyes J, Raineri F et al. Asymmetric mode scattering in strongly coupled photonic crystal nanolasers[J]. Optics Letters, 41, 5628-5631(2016).

    [110] Pan S H, Gu Q, El Amili A et al. Dynamic hysteresis in a coherent high-β nanolaser[J]. Optica, 3, 1260-1265(2016).

    [111] Jahnke F, Gies C, Aßmann M et al. Giant photon bunching, superradiant pulse emission and excitation trapping in quantum-dot nanolasers[J]. Nature Communications, 7, 11540(2016).

    [112] Marconi M, Javaloyes J, Hamel P et al. Far-from-equilibrium route to superthermal light in bimodal nanolasers[J]. Physical Review X, 8, 011013(2018).

    [113] Otto C, Lüdge K, Schöll E. Modeling quantum dot lasers with optical feedback: sensitivity of bifurcation scenarios[J]. Physica Status Solidi B, 247, 829-845(2010).

    [114] Wang T, Deng Z L, Sun J C et al. Photon statistics and dynamics of nanolasers subject to intensity feedback[J]. Physical Review A, 101, 023803(2020).

    [115] Genov D, Oulton R, Bartal G et al. Anomalous spectral scaling of light emission rates in low dimensional metallic nanostructures[J]. Physical Review B, 83, 245312(2011).

    [116] Altug H, Englund D, Vuckovic J. Ultrafast photonic crystal nanocavity laser[J]. Nature Physics, 2, 484-488(2006).

    [117] Matsuo S, Shinya A, Kakitsuka T et al. High-speed ultracompact buried heterostructure photonic-crystal laser with 13 fJ of energy consumed per bit transmitted[J]. Nature Photonics, 4, 648-654(2010).

    [118] Takiguchi M, Yokoo A, Nozaki K et al. Continuous-wave operation and 10-Gb/s direct modulation of InAsP/InP sub-wavelength nanowire laser on silicon photonic crystal[J]. ALP Photonics, 2, 046106(2017).

    [119] Wu H, Gao Y X, Xu P Z et al. Plasmonic nanolasers: plasmonic nanolasers: pursuing extreme lasing conditions on nanoscale[J]. Advanced Optical Materials, 7, 1900334(2019).

    [120] Hill M T. Electrically pumped metallic and plasmonic nanolasers[J]. Chinese Physics B, 27, 114210(2018).

    [121] Hill M T, Marell M, Leong E S et al. Lasing in metal-insulator-metal sub-wavelength plasmonic waveguides[J]. Optics Express, 17, 11107-11112(2009).

    [123] Kim M K, Lakhani A M, Wu M C. Efficient waveguide-coupling of metal-clad nanolaser cavities[J]. Optics Express, 19, 23504-23512(2011).

    [124] Ding K, Ning C Z. Metallic subwavelength-cavity semiconductor nanolasers[J]. Light: Science & Applications, 1, e20(2012).

    [125] Heiss D, Dolores-Calzadilla V, Fiore A et al. Design of a waveguide-coupled nanolaser for photonic integration. [C]∥Advanced Photonics 2013. Washington, D.C.: OSA, im2a, 3(2013).

    [126] Bermúdez-Ureña E, Tutuncuoglu G, Cuerda J et al. Plasmonic waveguide-integrated nanowire laser[J]. Nano Letters, 17, 747-754(2017).

    Tools

    Get Citation

    Copy Citation Text

    Zhang Haoran, Sun Jiacheng, Deng Zhilei, Zou Junlong, Chen Jiawei, He Xi, Wang Tao, Wang Gaofeng. Nanolasers: Progress, New Physics and Technical Challenges[J]. Chinese Journal of Lasers, 2020, 47(7): 701013

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Special Issue:

    Received: Feb. 4, 2020

    Accepted: --

    Published Online: Jul. 10, 2020

    The Author Email:

    DOI:10.3788/CJL202047.0701013

    Topics